Дослідження гібридної модифікації гуміновими кислотами екологічно безпечних біодеградабельних плівок на основі гідроксипропілметилцелюлози

2023;
: cc. 357 - 364
1
National Technical University "Kharkiv Polytechnic Institute"
2
National Technical University “Kharkiv Polytechnical Institute”
3
Lviv Polytechnic National University
4
Національний університет “Львівська політехніка”

Розглянуто можливість підвищення комплексу міцнісних та експлуатаційних властивостей екологічно безпечних біодеградабельних полімерних матеріалів на основі гідроксипропілметилцелюлози через модифікацію різними типами гумінових кислот (ГК) з бурого вугілля. Уперше одержані гібридні екологічно безпечні високоміцні плівки з антибактеріальними властивостями. Фізико-хімічними дослідженнями та ІЧ спектроскопією встановлено формування гібридних структур гідроксипропілметилцелюлози, модифікованої різними типами ГК. Виявлено закономірності зміни водопоглинання, міцності при розриві, відносного подовження при розриві та часу появи цвілі екологічно безпечних біодеградабельних полі-мерних матеріалів на основі гідроксипропілметилцелюлози в залежності від вмісту різних типів гумінових кислот. Також встановлено, що гібридна модифікація гідроксипропілметилцелюлози різними типами гумінових кислот при наданні їм антибактеріальних властивостей дозволяє зберегти в них властивості до біодеградації. Одержані екологічно безпечні біодеградабельні плівки з бактерицидними властивостями на основі гідроксипропілметилцелюлози та ГК за своїми експлуатацій-ними характеристиками перевершують відомі аналогічні біодеградабельні плівки на основі природних біополімерів.

  1. Cabrera, F.C. Eco-Friendly Polymer Composites: A Review of Suitable Methods for Waste Management. Polym. Compos. 2021, 42, 2653- 2677. https://doi.org/10.1002/pc.26033
  2. Wang, W.; Ge, J.; Yu, X.; Li, H. Environmental fate and impacts of microplastics in Soil Ecosystems: Progress and Perspective. Sci. Total Environ. 2020, 708, 134841. https://doi.org/10.1016/j.scitotenv.2019.134841
  3. Karamanlioglu, M.; Preziosi, R.; Robson, G.D. Abiotic and biotic environmental degradation on the Bioplastic Polymer Poly(Lactic Acid): A Review. Polym. Degrad. Stab. 2017, 137, 122-130. https://doi.org/10.1016/j.polymdegradstab.2017.01.009
  4. Abbasi, S.; Haeri, S.A. Biodegradable Materials and Their Applications in Sample Preparation Techniques - A Review. Microchem. J. 2021, 171, 106831. https://doi.org/10.1016/j.microc.2021.106831
  5. Cai, Q.; Li, X.; Zhu, W. High Molecular Weight Biodegradable Poly(ethylene glycol) via Carboxyl-Ester Transesterification. Ma-cromolecules 2020, 53, 2177-218. https://doi.org/10.1021/acs.macromol.9b02177
  6. Voronov, A.; Vasylyev, S.; Kohut, A.; Peukert, W. Surface Activity of New Invertible Amphiphilic Polyesters Based on Poly(ethylene glycol) and Aliphatic Dicarboxylic Acids. J. Colloid Interface Sci. 2008, 323, 379-385. https://doi.org/10.1016/j.jcis.2008.04.053
  7. Kohut, A.; Voronov, A.; Voronov, S. Micellization and Adsolubilization of Amphiphilic Invertible Polyesters. Chem. Chem. Technol. 2014, 8, 67-80. https://doi.org/10.23939/chcht08.01
  8. Anukiruthika, T.; Sethupathy, P.; Wilson, A.; Kashampur, K.; Moses, J.A.; Anandharamakrishnan, C. Multilayer Packaging: Advances in Preparation Techniques and Emerging Food Applica-tions. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1156-1186. https://doi.org/10.1111/1541-4337.12556
  9. Falguera, V.; Quintero, J.P.; Jiménez, A.; Muñoz, J.A.; Ibarz A. Edible films and Coatings: Structures, Active Function and trends in Their Use. Trends Food Sci. Technol. 2011, 22, 292-303. https://doi.org/10.1016/j.tifs.2011.02.004
  10. Lebedev, V.; Tykhomyrova, T.; Litvinenko, I.; Avina, S.; Saimbetova, Z. Design and Research of Eco-Friendly Polymer Composites. Mater. Sci. Forum 2020, 1006, 259-266. https://doi.org/10.4028/www.scientific.net/MSF.1006.259
  11. Lebedev, V.; Tykhomyrova, T.; Filenko, O.; Cherkashina, A.; Lytvynenko, O. Sorption Resistance Studying of Environmentally Friendly Polymeric Materials in Different Liquid Mediums. Mater. Sci. Forum 2021, 1038, 168-174. https://doi.org/10.4028/www.scientific.net/MSF.1038.168
  12. Lebedev, V.; Miroshnichenko, D.; Bilets, D.; Mysiak, V. Investigation of Hybrid Modification of Eco-Friendly Polymers by Humic Substances. Solid State Phenom. 2022, 334, 154-161. https://doi.org/10.4028/p-gv30w7
  13. Cecchini, C. The Rapid Plastic Revolution: Superstrong Poly-mers and Biomaterials. In Plastic Days. Materials & Design; Cecchini, C.; Petroni, M., Eds.; Silvana Editoriale, 2015; рр 36-61.
  14. Gómez-Aldapa, C.A.; Velazquez, G.; Gutierrez, M.C.; Rangel-Vargas, E.; Castro-Rosas, J.; Aguierre-Loredo, R.Y. Effect of Polyvinyl Alcohol on the Physicochemical Properties of Biodegradable Starch Films. Mater. Chem. Phys. 2020, 239, 122027. https://doi.org/10.1016/j.matchemphys.2019.122027
  15. Marcos, B.; Aymerich, T.; Monfort, J.M.; Garriga, M. Use of Antimicrobial Biodegradable Packaging to Control Listeria monocytogenes During Storage of Cooked Ham. Int. J. Food Microbiol. 2007, 120, 152-158. https://doi.org/10.1016/j.ijfoodmicro.2007.06.003
  16. Abral, H.; Atmajaya, A.; Mahardika, M.; Hafizulhaq, F.; Kadriadi; Handayani, D.; Sapuan, S.M.; Ilyas, R.A. J. Mater. Res. Technol. 2020, 9, 2477-2486. https://doi.org/10.1016/j.jmrt.2019.12.078
  17. Brandelero, R.P.H.; Brandelero. E.M.; de Almeida, F.M. Biodegradable Films of Starch/PVOH/Alginate in Packaging Systems for Minimally Processed Lettuce (Lactuca sativa L.). Cienc. e Agrotecnologia 2016, 40, 510-521. https://doi.org/10.1590/1413-70542016405010516
  18. Lebedev, V.; Miroshnichenko, D.; Xiaobin, Z.; Pyshyev, S.; Savchenko, D. Technological Properties of Polymers Obtained from Humic Acids of Ukrainian Lignite. Pet. Coal 2021, 63, 646-654. https://www.vurup.sk/wp-content/uploads/2021/08/PC-X_Miroshnichenko_31_r...
  19. Miroshnichenko, D.V.; Pyshyev, S.V.; Lebedev, V.V.; Bilets, D.Y. Deposits and Quality Indicators of Brown Coal in Ukraine. Nauk. Visnyk Natsionalnoho Hirnychoho Universytetu 2022, (3), 5-10. https://doi.org/10.33271/nvngu/2022-3/005
  20. Lebedev, V.; Miroshnichenko, D.; Xiaobin, Z.; Pyshyev, S.; Savchenko, D.; Nikolaichuk, Y. Use of Humic Acids from Low-Grade Metamorphism Coal for the Modification of Biofilms Based on Polyvinyl Alcohol. Pet. Coal 2021, 63, 953-962. https://www.vurup.sk/petroleum/2021/volume-63/#volume-63-2021-issue-4
  21. Lebedev, V.; Sizhuo, D.; Xiaobin, Z.; Miroshnichenko, D.; Pyshyev, S.; Savchenko, D. Hybrid Modification of Eco-Friendly Biodegradable Polymeric Films by Humic Substances from Low-Grade Metamorphism Coal. Pet. Coal 2022, 64, 539-546. https://www.vurup.sk/wp-content/uploads/2022/09/PC-X_Miroshnichenko-178.pdf
  22. EMEA. Committee for veterinary medicinal products-humic acids and their sodium salts, Summary report. EMEA, Amsterdam, Netherlands: European Agency for the Evaluation of Medicinal Products; 1999.
  23. Gandy, J.; Meeding, J. P.; Snyman, J. R.;Van Rensburg C. E. Phase 1 clinical study of the acute and subacute safety and proof-of-concept efficacy of carbohydrate-derived fulvic acid. Clinical Phar-macology: Advances and Applications 2012, 4, 7-11. https://doi: 10.2147/cpaa.s25784.
  24. Plastics. Evaluation of the ability to biochemical decomposi-tion. Test procedure and technical conditions, 2018. http://online.budstandart.com/ua/catalog/doc-page.html?id_doc=80595#:~:t...) (accessed 2022-11-29).
  25. Wang, L.F.; Chen, W.B.; Chen, T.Y.; Lu, S.C. Effects of the preparation methods of hydroxypropyl methylcellulose/polyacrylic acid blended films on drug release. Journal of Biomaterials Science 2003, 14(1), 27-44. https://doi: 10.1163/15685620360511128.