Indoor Positioning With Bluetooth Low Energy: A Preliminary System Design and Results

2025;
: pp. 28 - 33
1
Ivan Franko Lviv’s National University, Ukraine
2
Ivan Franko Lviv’s National University, Ukraine

This study explores indoor positioning in enc- losed environments using Bluetooth Low Energy technology. A system based on two Thunderboard Sense 2 beacons and a Nordic nRF52840-DK device has been proposed. The positioning method relies on signal characteristics to estimate the location of an object. Related research has been reviewed, and the technical implementation of the preliminary system has been presented. The results demonstrate the potential of Bluetooth Low Energy for accurate and energy-efficient indoor positioning and provide a basis for further experimental validation.

  1. Mendoza-Silva, G. M., Torres-Sospedra, J., & Huerta, J. (2019). A Meta-Review of Indoor Positioning Systems. Sensors,         19(20),  4507. DOI:https://doi.org/10.3390/s19204507
  2. Mary, J. S. N. (2022). Design of digital meters for industries using data acquisition system. IOP Conference Series: Materials Science and Engineering, 1258(1), 012047. DOI: https://doi.org/10.1088/1757-899X/1258/1/012047
  3. Shu, Y., Bo, C., Shen, G., Zhao, C., Li, L., & Zhao, F. (2015). Magicol: Indoor localization using pervasive magnetic field and opportunistic WiFi sensing. IEEE Journal on Selected Areas in Communications, 33(7), 1443– 1457. DOI: https://doi.org/10.1109/JSAC.2015.2430274
  4. Yang, Z., Zhou, Z., & Liu, Y. (2017). From RSSI to CSI:Indoor localization via channel response. ACM Computing Surveys,       49(2), 1–36. DOI: https://doi.org/10.1145/2543581.2543592
  5. Subedi, S., Gang, H.-S., Ko, N. Y., Hwang, S.-S., & Pyun, J.-Y. (2019). Improving indoor fingerprinting positioning with affinity propagation clustering and weighted centroid fingerprint. IEEE Access, 7, 31738–31750. DOI: https://doi.org/10.1109/ACCESS.2019.2902564
  6. Ramirez, R., Huang, C.-Y., Liao, C.-A., Lin, P.-T., Lin, H.- W., & Liang, S.-H. (2021). A practice of BLE RSSI measurement for indoor positioning. Sensors, 21(15), 5181.DOI: https://doi.org/10.3390/s21155181
  7. Huang, B., Liu, J., Sun, W., & Yang, F. A robust indoor positioning method based on Bluetooth Low Energy with separate channel information. Sensors, 19(16), 3487. DOI: https://doi.org/10.3390/s19163487
  8. Wu, C., Yang, Z., Zhou, Z., Qian, K., Liu, Y., & Liu, M. (2015). PhaseU: Real-time LOS identification with WiFi. IEEE conference on computer communications (INFOCOM), 2038-2046. DOI: https://doi.org/10.1109/ INFOCOM.2015.7218588
  9. Kardzhiev, R., & Stoyanov, B. (2022). New indoor posi- tioning system using ultrasonic. AIP Conference Procee-dings,   2505(1),   020003.   DOI:   https://doi.org/10.1063/5.0100660
  10. Sadowski, S., & Spachos, P. (2018). RSSI-based indoor localization with the Internet of Things. IEEE Access, 6, 30149–30161.                                   DOI:              https://doi.org/10.1109/ ACCESS.2018.2843325
  11. Liu, H., Darabi, H., Banerjee, P., & Liu, J. (2007). Survey of Wireless Indoor Positioning Techniques and Systems. IEEE Transactions on Systems, Man, and  Cybernetics, Part  C  (Applications  and  Reviews),  37(6),  1067–1080.DOI: https://doi.org/10.1109/TSMCC.2007.905750
  12. Syazwani,  N.  S.  C.  J.,  Wahab,  N.  H.  A.,  Sunar,  N.,Ariffin, S. H. S., Wong, K. Y., & Aun, Y. (2022, May). Indoor positioning system: A review. International Journal of Advanced Computer Science and Appli- cations, 13(6), 515–524. DOI: https://doi.org/10.14569/ IJACSA.2022.0130659
  13. He, S., & Chan, S.-H. G. (2016). Wi-Fi fingerprint-based indoor positioning: Recent advances and comparisons. IEEE Communications Surveys & Tutorials, 18(1), 466–490. DOI: https://doi.org/10.1109/COMST. 2015.2464084
  14. Zafari, F., Gkelias, A., & Leung, K. K. (2019). A survey of indoor localization systems and technologies. IEEE Communications Surveys & Tutorials, 21(3), 2568-2599. DOI:https://doi.org/10.1109/COMST.2019.2911558