Predicting Cyberspace Intrusions Using Machine Learning Algoritms

2025;
: pp. 59 - 64
1
Gori State University

The article presents possible strategies and approaches to address the growing cybersecurity threat landscape, new trends and innovations, such as artificial intelligence and machine learning for cyber threat detection and automation. The paper presents well-known machine learning classifiers for data classification. The dataset has been taken from a report by the Center for Strategic and International Studies. The presented model accuracy assessment study has been significant variation among algorithms based on different network intrusion detection systems.

  1. Biswas B., Mukhopadhyay A., Bhattacharjee S., Kumar A., and Delen D. (2022). A text-mining based cyber-risk assessment and mitigation framework for critical analysis of online hacker forums. Decision Support Systems, vol. 152.   113651.   DOI:   https://doi.org/10.1016/j.dss.2021.113651;
  2. Souri A., and Hosseini R. (2018) A state-of-the-art survey of malware detection approaches using data mining techniques.  Human-centric  Computing  and  InformationSciences,   vol.   8.   1-22.   DOI:   https://doi.org/10.1186/ s13673-018-0125-x
  3. Fang, X., Xu, M., Xu, S., & Zhao, P. (2019).  A  deep learning framework for predicting cyber attacks rates. EURASIP Journal on Information security, 2019, 1-11. DOI: https://doi.org/10.1186/s13635-019-0090-6;
  4. Zhang, Z., Ning, H., Shi, F., Farha, F., Xu, Y., Xu, J., & Choo, K. K. R. (2022). Artificial intelligence in cyber security: research advances, challenges, and opportunities. Artificial Intelligence Review, 1-25., DOI:https://doi.org/10.1007/s10462-021-09976-0;
  5. Gunduz, M. Z., & Das, R. (2020). Cyber-security on smart grid: Threats and  potential  solutions. Computer networks, 169, 107094. DOI: https://doi.org/10.1016/j. comnet.2019.107094
  6. Abbas, N. N., Ahmed, T., Shah, S. H. U., Omar, M., & Park, H. W. (2019). Investigating the applications of artificial intelligence in cyber security. Scientometrics, 121, 1189-1211. DOI:https://doi.org/10.1007/s11192-019-03222-9
  7. Liew, L. S., Sabaliauskaite, G., Kandasamy, N. K.,  & Wong, C. Y. W. (2021, December). A novel system- theoretic matrix-based approach to analysing safety and security of cyber-physical systems. In Telecom (Vol.  2, No. 4, pp. 536-553). MDPI. DOI:https://doi.org/10.3390/telecom2040030
  8. AsSadhan, B., & Moura, J. M. (2014). An efficient method to detect periodic behavior in botnet traffic by analyzing control plane traffic. Journal of advanced research, 5(4), 435-448. DOI: https://doi.org/10.1016/j.jare.2013.11.005
  9. Guembe, B., Azeta, A., Misra, S., Osamor, V. C., Fernandez-Sanz, L., & Pospelova, V. (2022). The emerging  threat  of  ai-driven  cyber   attacks:   A review. Applied   Artificial   Intelligence, 36(1),   2037254.DOI: https://doi.org/10.1080/08839514.2022.2037254  [10] Mumtaz,  G.,  Akram,  S.,  Iqbal,  M.  W.,  Ashraf,  M.  U.,
  10. Almarhabi, K. A., Alghamdi, A. M., & Bahaddad, A. A. (2023). Classification and prediction of significant cyber incidents (SCI) using data mining and machine learning (DM-ML). IEEE      Access, 11,      94486-94496.      DOI:https://doi.org/ 10.1109/ACCESS.2023.3249663
  11. Alqahtani, H., Sarker, I. H., Kalim, A., Minhaz Hossain, S. M., Ikhlaq, S., & Hossain, S. (2020). Cyber intrusion detection using machine learning classification techniques. In Computing Science, Communication and Security: First International Conference, COMS2 2020, Gujarat, India, March 26–27, 2020, Revised Selected Papers 1 (pp. 121- 131). Springer Singapore. DOI: https://doi.org/ 10.1007/978-981-15-6648-6_10
  12. Bhusal, N., Gautam, M., & Benidris, M. (2021). Detection of cyber attacks on voltage regulation in distribution systems using machine learning. IEEE Access, 9, 40402- 40416. DOI:       https://doi.org/10.1109/ACCESS.2021.3064689
  13. Bapat, R., Mandya, A., Liu, X., Abraham, B., Brown, D. E., Kang, H., & Veeraraghavan, M. (2018, April). Identifying malicious botnet traffic using logistic regression. In 2018 systems and information engineering design symposium (SIEDS) (pp. 266-271). IEEE. DOI: https://doi.org/ 10.1109/SIEDS.2018.8374749
  14. Ustebay, S., Turgut, Z., & Aydin, M. A. (2018, December). Intrusion detection system with recursive feature elimination by using random forest and deep learning classifier. In 2018 international congress on big data, deep learning and fighting cyber terrorism (IBIGDELFT) (pp.71-76). IEEE. DOI: https://doi.org/10.1109/IBIGDELFT.2018.8625318
  15. Chayal, N. M., & Patel, N. P. (2020). Review of machine learning and data mining methods to predict different cyberattacks. Data Science and Intelligent Applications: Proceedings of ICDSIA 2020, 43-51. DOI: https://doi.org/10.1007/978-981-15-4474-3_5
  16. Maeda, R., & Mimura, M. (2021). Automating post- exploitation with deep reinforcement learning. Computers&  Security, 100,  102108.  DOI:  https://doi.org/10.1016/ j.cose.2020.102108
  17. Handa, A., Sharma, A., & Shukla, S. K. (2019). Machine learning in cybersecurity: A review. WIREs Data Mining and Knowledge Discovery, 9 (4). DOI: https://doi.org/10.1002/widm.1306
  18. Xu, S. (2018). Bayesian Naïve Bayes classifiers to text classification. Journal of Information Science, 44(1), 48- 59. DOI:https://doi.org/10.1177/0165551516677946
  19. Susilo, B., & Sari, R. F. (2020). Intrusion detection in IoT networks using deep learning algorithm. Information, 11(5), 279. DOI:https://doi.org/10.3390/info11050279
  20. Dong, R. H., Li, X. Y., Zhang, Q. Y., & Yuan, H. (2020).Network intrusion detection model based on multivariate correlation  analysis–long short‐ time memory network. IET Information Security, 14(2), 166-174.DOI:https://doi.org/10.1049/iet-ifs.2019.0294
  21. Injadat, M., Moubayed, A., Nassif, A. B., & Shami, A. (2020). Multi-stage optimized machine learning framework for network intrusion detection. IEEE Transactions on Network and Service Management, 18(2), 1803-1816. DOI:https://doi.org/10.1109/TNSM.2020.3014929
  22. Barrenada, L., Dhiman, P., Timmerman, D., Boulesteix, A. L., & Van Calster, B. (2025). Understanding overfitting in random forest for probability estimation: a visualization and simulation study (vol 8, 14, 2024). Diagnostic and Prognostic Research, 9(1). DOI: https://doi.org/10.1186/s41512-024-00177-1
  23. Sarker, I. H., Abushark, Y. B., Alsolami, F., & Khan, A. I. (2020). Intrudtree: a machine learning based cyber security intrusion detection model. Symmetry, 12(5), 754. DOI:https://doi.org/10.3390/sym12050754