machine learning

EVALUATION OF MULTIMODAL DATA SYNCHRONIZATION TOOLS

The constant growth of data volumes requires the development of effective methods for managing, processing, and storing information. Additionally, it is advisable to apply multimodal approaches for knowledge aggregation to extract additional knowledge. Usually, the problem of efficient processing of multimodal data is associated with high-quality data preprocessing. One of the most critical preprocessing steps is synchronizing multimodal data streams to analyze complex interactions in different data types.

Neuro-symbolic models for ensuring cybersecurity in critical cyber-physical systems

This paper presents the results of a comprehensive study on the application of the neuro-symbolic approach for detecting and preventing cyber threats in railway systems, a critical component of cyber-physical infrastructures. The increasing complexity and integration of physical systems with digital technologies have made such infrastructures vulnerable to cyberattacks, where breaches can result in severe consequences, including system failures, financial losses, and threats to public safety and the environment.

Application of the Bayesian approach to modeling credit risks

A computer model for analyzing, evaluating, and forecasting bank credit risks has been developed.  Utilizing a Bayesian network (BN) and established parameter estimation methods, this model was implemented in the Python programming language.  It predicts the probability that a borrower may fail to meet financial obligations, such as repaying a loan.

Intelligent Fake News Prediction System Based on NLP and Machine Learning Technologies

The article describes a study of identification of fake news based on natural language processing, big data analysis and deep learning technology. The developed system automatically checks the news for signs of fake news, such as the use of manipulative language, unverified sources and unreliable information. Data visualization is implemented on the basis of a friendly user interface that displays the results of news analysis in a convenient and understandable format.

Analysis of the Use of HS and HTS Codes in Customs Classification Systems: Challenges and Opportunities of Integration of IT Technologies

The peculiarities of the use of the harmonized system of description and coding of goods, the harmonized tariff system of codes in modern customs classification systems are analyzed. Special attention is paid to the challenges that arise when applying these codes, in particular due to the complexity of the product nomenclature, as well as the variety of product descriptions. In addition, the possibilities of integrating IT technologies, machine learning and artificial intelligence methods to automate and optimize customs classification procedures are being explored.

The Feasibility of Using Reccurent Neural Networks as a Tool for Improving the Scrum Sprint Planning Process

The study substantiates the feasibility of using machine learning technology to improve the iteration planning process in IT projects implemented using the Scrum methodology. The problem of productivity planning in teams is set. The subject and object of the research are formulated. The expected scientific novelty and practical significance of the research results are described. A range of potential issues related to task planning in IT projects, particularly the accuracy of team productivity forecasting, is considered.

Computer Modelling of Logistic Regression for Binary Classification

This article discusses the practical aspects of applying logistic regression for binary data classification. Logistic regression determines the probability of an object belonging to one of two classes. This probability is calculated with the help of a sigmoid function, the argument of which is a linear convolution of the feature vector of the object with the weighting coefficients obtained during the minimization of the logarithmic loss function. Predicted class labels are determined by comparing the calculated probability with a given threshold value.

Information System for Adapting Road Lane Segmentation Methods in Navigation Systems in Order to Increase the Accuracy of Road Signs Detection

In today’s world, where the speed of technological change is extremely impressive, the traffic industry is not left behind. The use of lane segmentation on the road is becoming a key element not only for safety, but also for improving navigation and traffic sign detection systems. This approach opens the door to a new level of efficiency and accuracy in traffic management, helping to improve the quality and safety of our movement. Let’s dive into the details of this exciting and promising area of road transport technology development.

Intelligent System for Complex Military Information Analysis Based on Machine Learning and NLP to Assist Tactical Links Commanders

 The article describes the results of research into the processes of complex analysis of military information based on machine learning and natural language processing to help commanders of tactical units. The system should allow users to have the following capabilities: combining the dictionary and information material, adding terms and abbreviations to the dictionary, classifying objects for radio technical intelligence, visualizing aerial objects, classifying aerial objects, using information materials, organizing information materials.

UNDERSTANDING LARGE LANGUAGE MODELS: THE FUTURE OF ARTIFICIAL INTELLIGENCE

The article examines the newest direction in artificial intelligence - Large Language Models, which open a new era in natural language processing, providing the opportunity to create more flexible and adaptive systems. With their help, a high level of understanding of the context is achieved, which enriches the user experience and expands the fields of application of artificial intelligence. Large language models have enormous potential to redefine human interaction with technology and change the way we think about machine learning.