Quantum-inspired Computing: Comparsion of Variants of Shor’s Algorithm

2025;
: pp. 71 - 76
1
Lviv Polytechnic National University, Ukraine
2
Lviv Polytechnic National University, Ukraine

This study explores the theme of quantum- inspired computing, specifically the different variations of Shor’s algorithm. The focus of this article is on leveraging quantum computing’s approach to explore new ways to solve complex problems more efficiently than classical methods. Using the Microsoft Azure Quantum SDK, we have simulated variant of Shor’s algorithm to investigate its effectiveness in solving complex problems more efficiently than traditional methods. Although variant has demonstrated good potential for translating quantum principles to classical algorithms, it is not practical in terms of efficiency or scalability. It is relatively slow, highlighting its limitations in application. Nevertheless, it offers a valuable example of quantum-inspired algorithm design by reducing quantum complexity and introducing novel classical approaches.

  1. Willsch, D., Willsch, M., Jin, F., De Raedt, H., and Michielsen, K., (2023). Large-Scale Simulation of Shor‟s Quantum Factoring Algorithm. Mathematics, 11(19), 4222. DOI: https://doi.org/10.3390/math11194222.
  2. Hlukhov, V., (2021). Implementation of Shor‟s Algorithm in a Digital Quantum Coprocessor. Proceedings of the 2nd International Conference on Intellectual Systems and Information Technologies (ISIT 2021), CEUR Workshop Proceedings, Vol. 3126, pp. 15–23. Available at: https://ceur-ws.org/Vol-3126/paper2.pdf.
  3. Huynh, L., Hong, J., Mian, A., Suzuki, H., Wu, Y., & Camtepe, S. (2023). Quantum-inspired machine learning: a survey. arXiv preprint arXiv:2308.11269. DOI: https://doi.org/10.48550/arXiv.2308.11269.
  4. Duong, T. Q., Ansere, J. A., Narottama, B., Sharma, V., Dobre, O. A., & Shin, H. (2022). Quantum-inspired machine learning for 6G: fundamentals, security, resource allocations, challenges, and future research directions. IEEE open journal of vehicular technology, 3, 375-387. DOI: https://doi.org/10.1109/OJVT.2022.3202876.
  5. Moussa, C., Wang, H., Araya-Polo, M., Bäck, T., & Dunjko, V. (2023, September). Application of quantum-inspired generative models to small molecular datasets. In 2023 IEEE International Conference on Quantum Computing and Engineering (QCE) (Vol. 1, pp. 342-348). IEEE. DOI: https://doi.org/10.48550/arXiv.2304.10867.
  6. Smolin, J. A., Smith, G., & Vargo, A. (2013). Pretending to factor large numbers on a quantum computer. arXiv preprint arXiv:1301.7007. DOI: https://doi.org/10.48550/arXiv. 1301.7007
  7. Mansori, A. R., & Nguyeni, S. K. (2023). Quantum-Inspired Genetic Algorithms for Combinatorial Optimization Problems. Algorithm Asynchronous, 1(1), 16-23. DOI: https://doi.org/10.61963/jaa.v1i1.47
  8. Zhu, H., Luo, N. and Li, X., (2021). A Quantum-Inspired Cuckoo Co-Evolutionary Algorithm for No-Wait Flow Shop Scheduling. IET Collaborative Intelligent Manufacturing, 3(2), 105-118. DOI: https://doi.org/10.1049/cim2.12002
  9. Silveira, L. R., Tanscheit, R., & Vellasco, M. (2017). Quantum inspired evolutionary algorithm for ordering problems.  Expert  Systems  with  Applications,  67,  71–83.DOI: https://doi.org/10.1016/j.eswa.2016.08.067
  10. Arrazola, J. M., Delgado, A., Bardhan, B. R., & Lloyd, S. (2019).  Quantum-inspired  algorithms  in  practice.  arXivpreprint arXiv:1905.10415. DOI: https://doi.org/10.48550/ arXiv.1905.10415
  11. Kuo,  S.  Y.,  Lai,  Y.  T.,  Jiang, Y. C., Chang, M. H., Wu,  K.  M.,  Chen,  P.  C.,  ...  &  Chou,  Y.  H.  (2023, July). Entanglement Local Search-Assisted Quantum- Inspired Optimization  for  Portfolio  Optimization  in G20 Markets. In Proceedings of the Companion Conference on Genetic and Evolutionary Computation (pp. 2232-2240). DOI: https://doi.org/ 10.1145/3583133. 3596370.
  12. Ram, P. K., Bhui, N., & Kuila, P. (2020, July). Gene selection from high dimensionality of data based on quantum inspired genetic algorithm. In 2020 11th International  Conference  on  Computing,  Communication and Networking Technologies (ICCCNT) (pp. 1-5). IEEE.DOI: https://doi.org/10.1109/ICCCNT49239.2020.9225512
  13. Bertini, C., & Leporini, R. (2023). Quantum-inspired applications for classification problems. Entropy, 25(3), 404.DOI: https://doi.org/10.3390/e25030404
  14. Hlukhov, V. (2019). Implementing quantum Fourier transform in a digital quantum coprocessor. Advances in Cyber-Physical Systems: scientific journal, 1 (4), 2019, 4(1),7-14. DOI: https://doi.org/10.23939/acps2019.01.006
  15. Fu, X.-Q., Bao, W.-S., Huang, H.-L., Li, T., Shi, J.-H.,Wang, X., Zhang, S., and Li, F.-G., (2019). Realization of t- bit semiclassical quantum Fourier transform on IBM‟s quantum cloud computer. Chinese Physics B, 28, 2, 020302. DOI: https://doi.org/10.1088/1674-1056/28/2/020302