Adaptive Orchestration Mechanisms for Efficient Serverless Collection of Heterogeneous Environmental Data

2025;
: pp. 129 - 134
1
Lviv Polytechnic National University, Ukraine
2
Lviv Polytechnic National University, Specialized Computer Systems Department, Ukraine

The rapid expansion of cyber-physical systems (CPS) has intensified the need for scalable and adaptive mechanisms to collect heterogeneous environmental data from numerous unstable external sources. Traditional serverless orchestration frameworks, while elastic and cost- efficient, lack runtime adaptability and feedback-awareness, leading to inefficiencies under dynamic API conditions. This paper presents a novel adaptive orchestration model for serverless data collection pipelines, driven by metadata configuration and continuous feedback control. The proposed system integrates AWS-based components (Lambda, EventBridge, SQS, S3, Athena, MongoDB) to enable autonomous management of data collection processes from OpenAQ, NOAA, NASA GES DISC, and ESA
Copernicus. Adaptive behavior has been achieved through feedback-based health scoring and metadata-driven reconfiguration, improving resilience to vendor instability, API schema changes, and rate-limit fluctuations. Experimental validation has demonstrated a 40% reduction in failed invocations, a 22% latency improvement, and a 17% decrease in operational costs compared to static orchestration approaches. The results confirm the feasibility of fully adaptive, serverless data orchestration and establish the groundwork for future AI-assisted autonomous orchestration in heterogeneous CPS environments.

[1]. Jonas, E., Schleier-Smith, J., Sreekanti, V., Tsai, C. C., Khandelwal, A., Pu, Q., ... & Patterson, D. A. (2019). Cloud programming simplified: A berkeley view on serverless computing. arXiv preprint arXiv:1902.03383. https://doi.org/10.48550/arXiv.1902.03383

[2]. Sirajuddin, M. (2024). Advances in serverless compu- ting: a paradigm shift in cloud application development. International journal of computer engineering & techno- logy. 15. 1440-1449. DOI: 10.5281/zenodo.14506248.

[3]. Malyuga, K., Perl, O., Slapoguzov, A., Perl, I. (2020). Fault Tolerant Central Saga Orchestrator in RESTful Architecture. Proceedings of the XXth Conference of Open Innovations Association FRUCT.26. 278-283. DOI: 10.23919/FRUCT48808.2020.9087389.

[4]. Werner, S., & Tai, S. (2024). A reference architecture for serverless big data processing. Future Generation Computer Systems, 155, 179-192. DOI: https://doi.org/10.1016/j.future.2024.01.029

[5]. Mathew, A., Andrikopoulos, V., Blaauw, F. J., & Karas- toyanova, D. (2024). Pattern-based serverless data pro- cessing pipelines for Function-as-a-Service orchestration systems. Future Generation Computer Systems, 154, 87- 100. DOI: https://doi.org/10.1016/j.future.2023.12.026

[6].  Li,  Y.,  Lin,  Y.,  Wang,  Y.,  Ye,  K.,  &  Xu,  C.  (2022). Serverless computing:  state-of-the-art,    challenges   and opportunities. IEEE Transactions on Services Computing, 16(2), 1522-1539. DOI: 10.1109/TSC.2022.3166553

[7]. Richardson, C. (2018). Microservices patterns: with examples in Java. Simon and Schuster, New York. 520 p.

[8]. Sharma, S. K. (2025). Serverless Architectures for Scalable and Cost-Efficient Information Systems in SMEs. International Journal of Performability Engineering, 21(8). 438.      DOI: 10.23940/ijpe.25.08.p4.438449

[9]. Madhusudanan, J., Geetha, S., Prasanna Venkatesan, V., Vignesh, U., & Iyappan, P. (2018). Hybrid Aspect of Context‐  Aware    Middleware    for    Pervasive    Smart Environment: A  Review. Mobile InformationSystems, 2018(1), 6546501. DOI: https://doi.org/10.1155/2018/6546501

[10]. Bhardwaj, E., Gujral, H., Wu, S., Zogheib, C., Maharaj, T., & Becker, C. (2024, June). Machine learning data practices through a data  curation  lens:  An  evaluation  framework. In Proceedings of the 2024 ACM Conference on Fairness, Accountability, and Transparency (pp. 1055-1067). DOI: https://doi.org/10.1145/3630106.3658955

[11]. Alatawi, M. N. (2025). Optimizing Multitenancy: Adaptive Resource Allocation in Serverless Cloud Environments Using Reinforcement Learning. Electronics, 14(15), 3004. DOI: https://doi.org/10.3390/electronics14153004

[12]. Bordin, M. V., Griebler, D., Mencagli, G., Geyer, C. F., & Fernandes, L. G. L. (2020). Dspbench: A suite of benchmark applications for distributed data stream processing systems. IEEE Access, 8, 222900-222917. DOI: 10.1109/ACCESS.2020.3043948