Detection of Stego Images with Adaptively Embedded Data by Component Analysis Methods

2021;
: pp. 146 - 154
Authors:
1
Igor Sikorsky Kyiv Polytechnic Institute

Ensuring the effective protection of personal and corporate sensitive data is topical task today. The special interest is taken at sensitive data leakage prevention during files transmission in communication systems. In most cases, these leakages are conducted by usage of advance adaptive steganographic methods. These methods are aimed at minimizing distortions of cover files, such as digital images, during data hiding that negatively impact on detection accuracy of formed stego images. For overcoming this shortcoming, it was proposed to pre-process (calibrate) analyzed images for increasing stego- to-cover ratio. The modern paradigm of image calibration is based on usage of enormous set of high-pass filters. However, selection of filter(s) that maximizes the probability of stego images detection is non-trivial task, especially in case of limited a prior knowledge about embedding methods. For solving this task, we proposed to use component analysis methods for image calibration, namely principal components analysis. Results of comparative analysis of novel maxSRMd2 cover rich model and proposed solution showed that principal component analysis allows increasing detection accuracy up to 1.5% even in the most difficult cases (low cover image payload and absence of cover- stego images pairs in training set).

  1. V. Kopeytsev. “Steganograph in attacks on industrial enterprises”. Kaspersky Inc., Tech. Rep, 2020, 6 pages. [Online]               Available                                        at:https://ics-cert.kaspersky.com/media/KASPERSKY_Steganography_in_ta rgeted_attacks_EN.pdf (Accessed: 10 November 2021)
  2. J. Fridrich, Steganography in Digital Media: Principles, Algorithms, and Applications. Cambridge: Cambridge University Press, 2009, 437 pages, ISBN 978–0–521–19019–0, DOI: 10.1017/CBO9781139192903.
  3. G. Konachovych, D. Progonov, O. Puzyrenko. Digital steganography processing and analysis of multimedia files. Kyiv, ‘Tsentr uchbovoi literatury’ publishing, 2018, 558 pages, ISBN                           978-617-673-741-4,   Available   at: http://pdf.lib.vntu.edu.ua/books/2019/Konahovich_2018_558.p df (Accessed: 17 November 2021).
  4. J. Fridrich, J. Kodovsky. “Rich models for  steganalysis  of digital images”, IEEE Transactions on Information Forensics and Security, vol. 7, iss. 3, 2012, pp. 868-882, DOI 10.1109/TIFS.2012.2190402.
  5. M. Boroumand, M. Chen, J. Fridrich. “Deep Residual Network for Steganalysis of Digital Images”, IEEE Transactions on Information Forensics and Security, vol. 14, iss. 5, 2018, pp. 1181-1193. DOI: 10.1109/TIFS.2018.2871749.
  6. T. Denemark, V. Sedighi, V. Holub, R. Cogranne, J. Fridrich. “Selection-Channel-Aware Rich Model for Steganalysis of Digital Images”, in IEEE Workshop on Information Forensic and Security, Atlanta, GA, 2014, DOI 10.1109/WIFS.2014.7084302.
  7. R. Zhang, F. Zhu, J. Liu, and G. Liu, ‘‘Efficient feature learning and multisize image steganalysis based on CNN,’’ Jul. 2018, arXiv:1807.11428.                         [Online].                       Available: http://arxiv.org/abs/1807.11428 (Accessed: 10 November 2021)
  8. A. Cohenab, A. Cohena, N. Nissim. “ASSAF: Advanced and Slim StegAnalysis Detection Framework for JPEG images based on deep convolutional denoising autoencoder and Siamese networks”, Neural Networks, vol. 131, pp. 64-77, Nov. 2020. [Online]. DOI: 10.1016/j.neunet.2020.07.022
  9. J. Kodovskym J.  Fridrich.  “Calibration  revisited”,  in Multimedia and security: 11th ACM workshop, Princeton, 2009, pp. 63-74, DOI: 10.1145/1597817.1597830.
  10. J. Butora, Y. Yousfi, J. Fridrich. “How to Pretrain for Steganalysis”, in ACM Workshop on Information Hiding and Multimedia Security, Brussels, Belgium, 2021, pp. 143-148, DOI: 10.1145/3437880.3460395.
  11. T. Filler, J. Fridrich. “Gibbs construction in steganography”, IEEE Transactions on Information Forensics Security, vol. 5, 2010, pp. 705-720, DOI: 10.1109/TIFS.2010.2077629.
  12. T. Filler, J. Fridrich. “Design of adaptive steganographic schemes for digital images”, in Electronic Imaging, Media Watermarking, Security, and Forensics: The International Society for Optical Engineering, San Francisco, CA, 2011, DOI: 10.1117/12.872192.
  13. V. Sedighi, J. Fridrich, R. Cogranne. “Content-adaptive pentary steganography using the multivariate generalized gaussian cover model”, in Electronic Imaging, Media Watermarking, Security, and Forensics: The International Society for Optical Engineering, San Francisco, CA, 2015, DOI: 10.1117/12.2080272.
  14. V. Sedighi, R. Cogranne, J. Fridrich. “Content adaptive steganography by minimizing statistical detectability”, IEEE Transactions on Information Forensics Security, vol. 11, 2015, pp. 221-234, DOI: 10.1109/TIFS.2015.2486744.
  15. Stan Z. Li. Markov Random Field Modeling in Image Analysis. In Advances in Computer Vision and Pattern Recognition, Springer,    2009,    362    pages,    ISBN    978-1-84800-278-4, Available   at:   https://link.springer.com/book/10.1007/978-1- 84800-279-1 (Accessed: 17 November 2021).
  16. S. Mallat. A Wavelet Tour of Signal Processing. The Sparse Way. 3rd ed. Academic Press, 2008, 832 pages, ISBN 978- 0123743701, Availableat: https://www.sciencedirect.com/book/9780123743701/a-wavelet-tour-of-signal-processing   (Accessed:  17  November 2021).
  17. P. Comon, C. Jutten. Handbook of Blind Source Separation. 1st ed. Academic Press, 2010, 856 pages, ISBN 9780123747266, Available at: https://www.sciencedirect.com/book/9780123747266/handboo k-of-blind-source-separation (Accessed: 17 November 2021).
  18. R. Gonzalez, R. Woods. Digital Image Processing. 4th ed. Pearson Press, 2017. 1192 pages, ISBN 978-0133356724, Available  at: http://sdeuoc.ac.in/sites/default/files/sde_videos/Digital%20Ima ge%20Processing%203rd%20ed.%20-%20R.%20Gonzalez%2C%20R.%20Woods-ilovepdf- compressed.pdf (Accessed: 17 November 2021).
  19. R. Cogranne, Q. Gilboulot, P. Bas. “The alaska steganalysis challenge: A first step towards steganalysis”, in Information Hiding and Multimedia Security, Paris, 2019, ACM Press, pp. 125-137, DOI: 10.1145/3335203.3335726.
  20. T. Pevny, P. Bas, J. Fridrich. “Steganalysis by subtractive pixel adjacency matrix”,  IEEE Transactions on Information Forensics Security, vol. 5, 2010, pp. 215-224, DOI: 10.1109/TIFS.2010.2045842.
  21. J. Kodovsky, J. Fridrich. “Ensemble classifiers for steganalysis of digital media”, IEEE Transactions on Information Forensics Security, vol. 7, 2012, p. 432-444, DOI: 10.1109/TIFS.2011.2175919.
  22. D. Progonov, V. Lucenko. “Steganalysis of adaptive embedding methods by message re-embedding into stego images”, Information Theories and Applications, vol. 27, iss. 4, 2020, p. 3-24, Available at: http://www.foibg.com/ijita/vol27/ijita27-04- p01.pdf (Accessed: 17 November 2021).
  23. D. Progonov. “Influence of digital images preliminary noising on statistical stegdetectors  performance”, Radio Electronics, Computer Science, Control, vol. 1(56), 2021, pp. 184-193, DOI: 10.15588/1607-3274-2021-1-18.
  24. D. Progonov. “Performance of Statistical Stegdetectors in Case of  Small  Number  of  Stego  Images  in  Training  Set”,  in “Problems of Infocommunications Science and Technology (PIC          S&T         2020)”,      Kharkiv,    2020, DOI:10.1109/PICST51311.2020.9467901.