Моделювання середовищ із заданим коефіцієнтом заломлення на основі характеристик розсіяння електромагнітного поля

: pp. 69 – 78
Андрійчук M. І.

Інститут прикладних проблем механіки і математики ім. Я. С. Підстригача НАН України.
Національний університет «Львівська політехніка», кафедра систем автоматизованого проектування.

Combination of the asymptotical approach for solving the initial diffraction problem and numerical solution of the received integral equations is applied to creating the media with desired refraction coefficient. The obtained refraction coefficient, close to the desired one, is created by change of electrophysical and geometrical parameters of small particles embedded in given media. The initial diffraction problem is considered under the assumptions ka > , where a is the size of the particle and d is the distance between the neighboring particles. Impedance boundary conditions are assumed on the boundaries of small particles. The results of numerical simulation show good agreement with the theory. They open a way to numerical implementation of the method for creating media with a desired refraction coefficient.

1. Lyshevski S. E. MEMS and NEMS: Systems, Devices and Structures CRC Press, Boca Raton, FL, 2002. 2. Rebeiz G. M. FR MEMS. Theory, Design and Technology. New York: Wiley, 2003. 3. Ramm A.G. Wave Scattering by Small Bodies of Arbitrary Shapes, Singapure, World Sci. Publisher, 2005. 4. Ramm A. G. Inverse Problems. Springer, Berlin, 2005. 5. Seo J. T., Yang Q., Creekmore S., Tabibi B., Temple D., Kim S. Y., Yoo K., Mott A., Namkung M., Jung S. S. Large pure refractive nonlinearity of nanostructure silica aerogel // Applied Physics Letters. – 2003. Vol. 82, n 6. – P. 4444–4446. 6. Shonbrun E., Tinker M., Park Wounjhang, Jeong-Bong Lee. Negative refraction in a Si-polymer photonic crystal membrane // IEEE Photonics Technology Letters. – 2005. – Vol. 17, n 7. – P. 1196–1198. 7. von Rhein A., Pergande D., Greulich-Weber S., Wehrspohn R. B. Experimental verification of apparent negative refraction in lowepsilon material in the microwave regime // Journal of Applied Physics. – 2007. – Vol. 101, issue 8, n. 4. – P. 086103–086103-3. 8. Ramm A. G. Many Body Wave Scattering by Small Bodies and Applications // J. Math. Phys. – 2007. – Vol. 48, n. 10. – P. 103511. 9. Ramm A. G. Wave Scattering by Many Small Particles Embedded in a Medium // Physics Letters A. –2008. – Vol. 372. – P. 3064–3070. 10. Вайнштейн Л. А. Электромагнитные волны. – М.: Радио и связь, 1988. – 440 с. 11. Ramm A. G. A Collocation Method for Solving Integral Equations // Intern. Journ. of Comput. Sci. and Mathem. – 2009. – Vol. 3, n. 2. – P. 122–128. 12. Nazarchuk Z. T. Singular Integral Equations in Diffraction Theory. – Lviv: PMI, 1994. – 210 p. 13. Andriychuk M. I., Ramm A. G. Numerical Modeling in Wave Scattering Problem for Small Particles // Proc. of 18th International Conference MIKON-2010. Vilnius, Lithuania: Geozondas, 2010. – Vol. 1. – P. 224–227. 14. Andriychuk M. I. and Ramm A. G. Scattering by many small particles and creating materials with a desired refraction coefficient // Int. J. Computing Science and Mathematics. – 2010. – Vol. 3, n. 1/2. – P. 102–121.