DESIGN OF DYNAMICAL SYSTEMS WITH POINT ATTRACTORS USING THE JACOBSTHAL-COLLATZ RECURRENT METHOD

2025;
: 144-155
Received: August 14, 2025
Revised: August 20, 2025
Accepted: September 15, 2025
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University

The work is devoted to the study of dynamical systems with point attractors by the recurrent method of transforming discrete data from the set of natural numbers, in the direction of increasing powers of two (direct Jacobsthal problem) and in the opposite direction (reverse Collatz problem). The idea of splitting the set N into separate non-overlapping subsets by Jacobsthal transformation of numbers was also expressed for the first time. It was established that this effect correlates with the regularities of Collatz-type sequences in the reverse direction of the transformation of the set N of initial numbers. It is shown that the number of segregation groups of the set N correlates with the number of periodic cycles of completion of Collatz sequences, plus the group of numbers that forms infinitely increasing Collatz sequences.

[1] Collatz Conjucture. https://www.dcode.fr/collatz-conjecture.

[2] E.Weisstein. Collatz Problem, From MathWorld–A Wolfram Web Resource at: http://mathworld.wolfram.com/CollatzProblem.html; Collatz conjecture, From Wikipedia, the free encyclopedia at: https://en.wikipedia.org/wiki/Collatz conjecture.

[3] BCMATH programs for some generalized 3x+1 mapping sequences and other recursively defined integer sequences. https://www.numbertheory.org/php/collatz.html

[4] The On-line encyclopedia of integer sequences. The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Available online.  https://oeis.org

[5] J.Choi. Ternary Modified Collatz Sequences And Jacobsthal Numbers. Journal of Integer Sequences, Vol. 19 (2016), Article 16.7.5

[6] Р.Kosobutskyy. Comment from article «M.Ahmed, Two different scenarios when the Collatz Conjecture fails. General Letters in Mathematics. 2023». (2022),  Gen.Lett. Math., 12(4) (2022), 179-182. https://www.refaad.com/Files/GLM/GLM-12-4-4.pdf

[7] A. Ahmed. Two different scenarios when the Collatz Conjecture fails. General Lettaers in Mathematics. April 2022. https://doi.org/10.31559/ glm2021.11.2.4 

[8] L.Green. The Negative Collatz Sequence. (2022), v1.25: 14 August 2022. CEng MIEE. https://aplusclick.org/pdf/neg_collatz.pdf.

[9] J.Lagarias. The 3x + 1 problem: An overview. In: The Ultimate Challenge: The 3x + 1 Problem. American Mathematical Society; 2010. Volume 1. pp. 3–29. https://doi.org/10.48550/arXiv.2111.02635E.

[10] L.Green. The Negative Collatz Sequence. (2022), v1.25: 14 August 2022. CEng MIEE. https://aplusclick.org/pdf/neg_collatz.pdf.

[11] P. Kosobutskyy. The Collatz problem as a reverse problem on a graph tree formed from Q*2^n (Q=1,3,5,7,…) Jacobsthal-type numbers .arXiv:2306.14635v1

[12] Masrat Rasool, Samir Brahim Belhaouari. From Collatz Conjecture to chaos and hash function. Chaos, Solitons & Fractals Volume 176November 2023, 114103https://doi.org/10.1016/j.chaos.2023.114103.

[13] V. Bandara, R. Ranasinghe.  A Novel Cryptographic Scheme based on the Collatz Conjecture 2023  https://www.researchgate.net/publication/367271522_A_Novel_Cryptographic_Scheme_based_on_the_ Collatz_Conjecture

[14] https://en.wikipedia.org/wiki/Prime_number

[15] Aristotel. Nikomakhova aryfmetyka. Pereklad z davnohretskoi V.Stevniuka. Kyiv: Akvilon-Plius, 2002

[16] P. Kosobutskyy, The Jacobsthal-Collatz-Terras model of conjecture the natural numbers in κq + 1 problems, Journal of AppliedMath, 3 (2025), 1767.https://doi.org/10.59400/jam1767

[17] P. Kosobutskyy, “The Collatz problem (a·q ± 1, a=1,3,5,…) from the point of view of transformations of Jacobsthal numbers,” https://doi.org/10.48550/arXiv.2306.14635

[18] Kosobutskyy P., D. Rebot. Collatz conjecture 3n ± 1  as a Newton Binomial Problem. Computer Design Systems (CDS). Theory and Practice, Vol. 5, Num. 1, 2023.рр.137-145

[19] Kosobutskyy P., A. Yedyharova, T. Slobodzyan. From netwon’s binomial and Pascal’s triangle to Collatz’s Problem.  Computer Design Systems (CDS).. 2023; Vol. 5, Num. 1: 121-127 https://doi.org/10.23939/cds2023.01.121

[20] Kosobutskyy P., B. Vasylyshyn.REFLECTION OF THE 3q±1 PROBLEM ON THE JACOBSTHAL MAP.  Computer Design Systems (CDS)..2024;Vol. 6, Num. 2: pp.23-34 https: //doi.org/10.23939/cds2024.02.023

[21] Kosobutskyy P., N.Nestor. “On the mathematical model of the transformation of natural numbers by a function of a split type”.  Computer Design Systems (CDS)..2024;Vol. 6, Num. 2: рр.44-50 https://doi.org/10.23939/cds2024.02.044

[22] Kosobutskyy P., D. Rebot, B. Guzowski STATISTICAL MODELING OF κ·q±1 DISCRETE DATA  TRANSFORMATION SYSTEMS.  Computer Design Systems (CDS)..2024;Volume 6, Num 2: рр.61-75 https://doi.org/10.23939/cds2024.02.061 16, 2024

[23]  Sloane N..  The On-Line Encyclopedia of Integer Sequences.  https://oeis.org.

[24] S.Volkov. (2006). A probabilistic model for the 5k+1 problem and related maps. Stochastic Processes and their Applications, 116(4), 662-674. http://www.sciencedirect.com/science/article/pii/S0304414905001602

[25] B.Snapp, M. Trac. The Collatz Problem and Analogues. Journal of Integer Sequences, Vol. 11 (2008). Article 08.4.7

[26] W. Kandasamy, I. Kandasamy, F.Smarandache. A New 3n − 1 Conjecture Akin to Collatz Conjecture. Preprint submitted to Elsevier. October 10, 2016

 [27] Sultanov, C.Koch, S.Cox (2020). Collatz Sequences in the Light of Graph Theory.. Preprint published at the Institutional Repository of the Potsdam University: https://doi.org/10.25932/publishup-48214

[28] Crandall, R. (1978) On the “3x+1” Problem. Mathematics of Computation , 32, 1281-1292. https://doi.org/10.2307/2006353