A neural circuit model of tracking control for continuous-time nonlinear dynamic systems

: pp. 92-96
Lviv Polytechnic National University, Department of Computer Aided Design Systems

A neural circuit model of tracking control for unknown nonlinear dynamic systems is proposed. A first-order differential equation with variable structure and an output equation are used to describe the model. The model gives a possibility to reach a finite convergence time to working modes and limited tracking error. It does not need learning phase in offline mode. The model uses only outputs of the system and object to minimize tracking error of object trajectory. It has simple structure and can be used if internal dynamics and parameters of control system are unknown. Results of computer simulations of the model applications for optimal tracking control of rotation angle of two-link planar elbow manipulator confirming theoretical statements and illustrating its high performance are provided.

[1] Slotine, J.-J., Li, W. Applied nonlinear control. Prentice-Hall, Englewood Cliffs, NJ, USA (1991).

[2] Sastry, S. Nonlinear systems analysis, stability, and control. Springer, Berlin, Germany (1999).

[3] Naidu, D. Optimal control systems. CRC Press, London, UK (2003).

[4] Lewis, F. L., Vrabie, D. L., Syrmos, V. L.: Optimal control. John Wiley & Sons, Hoboken, New Jersey (2012). doi: 10.1002/9781118122631. https://doi.org/10.1002/9781118122631

[5] Navabi, M., Mirzaei, H. Robust optimal adaptive trajectory tracking control of quadrotor helicopter. Latin American Journal of Solids and Structures 14, 1040-1063 (2017). doi: 10.1590/1679-78253595. https://doi.org/10.1590/1679-78253595

[6] Perez-Cruz, J. H., Rubio, J. J., Ruiz-Velazquez, E., Solis-Perales, G. Tracking control based on recurrent neural networks for nonlinear systems with multiple inputs and unknown dead zone. Abstract and Applied Analysis 2, 1-18 (2012). doi: 10.1155/2012/471281. https://doi.org/10.1155/2012/471281

[7] Yen, H.-M., Li, T.-H. S., Chang, Y.-C. Design of a robust neural network-based tracking controller for a class of electrically driven nonholonomic mechanical systems. Information Sciences 222, 559-575 (2013). doi: 10.1016/j.ins.2012.07.053. https://doi.org/10.1016/j.ins.2012.07.053

[8] Haykin, S. Neural networks and learning machines. Pearson, Ontario, Canada (2008).

[9] Slotine, J.-J. E., Li, W.: Adaptive manipulator control: A case study. IEEE Trans. on Automatic Control AC33(11), 995-1003 (1988). doi: 10.1109/9.14411. https://doi.org/10.1109/9.14411

[10] Lewis, F. L., Yeşildirek, A., Liu, K. Multilayer neural net robot controller with guaranteed tracking performance. IEEE Trans. on Neural Networks 7 (2), 388-399 (1996). doi:10.1109/72.485674. https://doi.org/10.1109/72.485674