Creation of computer facilities for controlling an autonomous aircraft with the use of remote cloud calculations

2021;
: pp. 106 - 113
Authors:
1
Lviv Polytechnic University and the National Academy of Ground Forces

The possibility of creating a computer control system for an unmanned aerial vehicle using remote cloud computing according to predefined scenarios from the user’s desktop is investigated. For this, an experimental setup was created, which includes a quadcopter, a personal computer with the Windows operating system, an on-board computer Raspberry-3 with the Linux operating system, a Pi Camera V2 camcorder, and a Pixhawk autopilot. To model the control and transmission of video images the own control programs and photo pursuit on a computer Raspberry-3 in Python are recorded. Based on the obtained results, a model of unmanned aerial vehicle control from the desktop of the user’s personal computer via the on-board computer without the use of a standard control panel and operator is proposed.

  1. V. Chyhin, M. Protsenko, Yu.Shabatura, M.Bugayov. Improving the method of detecting unmanned aerial vehicles based on the results of spectral analysis of acoustic signals. Military-technical collection of DIA, 2019. N20, pp. 58-63. doi:10.33577/2312-4458.20.2019.58-63.
  2. Vasyl Chyhin, Pavlo Mykhailyshyn. Experimental unmanned aerial vehicle for photo capture. Bulletin of Khmelnytsky National University. 2019, № 2 (271), p. 202-206. doi: 10.31891/2307-5732-2019-271-2-202-206.
  3. Vasyl Chyhin, Pavlo Mykhailyshyn. Experimental studies of unmanned aerial vehicles during photo capture. Bulletin of Khmelnytsky National University. 2020, N3 (285), p. 186-188. doi: 10.31891/2307-5732-2020- 285-3-28.
  4. V. Glotov, A. Gunina, Y. Teleschuk. Analysis of the possibilities of using unmanned aerial vehicles for military purposes. Photogrammetry, geographic information systems and cartography. V. 1 (33), 2017. P.139-146. Available at: https://scholar.google.com.ua/citations?view_op=view_citation&hl=uk&user... (Accessed: 05 December 2021).
  5. M. Lavrovsky. Development of unmanned aerial vehicles in Ukraine and the world to perform civil defense tasks. Scientific Bulletin of NLTU of Ukraine, 2017, vol. 27, № 1. P.151-153. Available at: https://nv.nltu.edu.ua/Archive/2017/27_1/37.pdf (Accessed: 05 November 2021).
  6. V. Chyhin, M. Chernenko. Experimental system and software for the study of photodetection and pursuit of moving objects by unmanned aerial vehicles. Bulletin of Khmelnytsky National University. 2020, № 4 (287), p. 84-88. doi:10.31891/2307-5732-2020-287-4-84-88.
  7. RaspberryPi. Available at: https://www.raspberrypi.org/products (Accessed: 05 November 2021).
  8. HardKernel. Available at: https: //www.hardkernel.comshopodroid-c2 (Accessed: 05 December 2021) 
  9. Nastolnye-kompyuterylattepanda.      Available       at:               https://hotline.uacomputer-nastolnye- kompyuterylattepanda-lattepanda-2g32gb (Accessed: 05 November 2021).
  10. Mission-planner  .  Available  at:  http://www.ardupilot.su/wiki/arducopter/install-mission-planner.html (Accessed: 05 December 2021).
  11. Flylitchi . Available at: https://flylitchi.com (Accessed: 05 November 2021).
  12. QGroundControl . Available at:  http://qgroundcontrol.com (Accessed: 05 November 2021).
  13. Ballon Finder [. Available at:  https://www.youtube.com/watch?v=yRmXwRqPesY&feature=youtu.be.
  14. Active   track   2.0   на   dji   mavic   2   pro.   Available   at:         https://www.youtube.com/watch?v= qEmd5g2fMcE&feature=youtu.be (Accessed: 05 November 2021).
  15. DroneKit . Available at:  https://dronekit.io  (Accessed: 05 November 2021).
  16. OpenCV . Available at: https://opencv.org (Accessed: 05 November 2021).
  17. PiCamera . Available at:  https://picamera.readthedocs.io (Accessed: 05 November 2021).
  18. Virtual_Network_Computing . Available at: https://uk.wikipedia.org/wiki/Virtual_Network_Computing (Accessed: 05 November 2021).