Tracker for solar power plants

2022;
: pp. 37 - 46
1
Lviv Polytechnic National University, Ukraine
2
Lviv Polytechnic National University, Computer Engineering Department

The article investigates a device for tracking the position of the sun during the day - a tracker for solar power plants. The practice of using solar trackers as a device to increase the efficiency of solar power plants is considered. The relevance of this development in Ukraine and prospects for its development are determined.

Methods and principles of increasing the efficiency of solar energy production, expediency of using trackers for solar power plants are analyzed. The aim of the article is to present the stages of development of a biaxial solar tracker and the algorithm of the controlling the angle of inclination of solar panels placed on a moving platform, relative to the obtained data on the position of the sun.

The article presents a tracker for solar power plants, its structure and algorithm. It is stated that the principle of operation is to analyze the current position of the sun and automatically set the movable platform with solar panels in the most effective position.

  1. Kurbatova T., Spivakovskyy S., Sotnyk M. and Hyrchenko Y. «Solar Energy Advancement in Ukraine’s Households: is the Feed-In Tariff Economically Justified?», 2021 IEEE International Conference on  Modern Electrical and Energy Systems (MEES), 2021. Pp. 1–4. DOI: 10.1109/MEES52427.2021.9598758.
  2. Aziz Bhuiyan M. A., Bhuiyan M. H., Rahman M. A., Abir M. A., Mehfuz N. and Salehin S. «Economic Assessment of Concrete and Floating Based Solar Chimney Power Plants in Bangladesh», 2020 IEEE Region 10 Symposium (TENSYMP), 2020. Pp. 638–641. DOI: 10.1109/TENSYMP50017.2020.9230846.
  3. Anthony R. N. and Navghare S. P. «An insight to distributed generation of electrical energy from various renewable sources», 2016 International Conference on Energy Efficient Technologies for Sustainability (ICEETS), 2016. Pp. 341–344. DOI: 10.1109/ICEETS.2016.7583777.
  4. Slabinoha M. O., Kuchirka Y. M., Krinitsky O. S., Yourkiv N. M. «Modeluvanna zalezhnosty zminy potuzhnosty sonachnih paneley vid kuta padinna promeniv», 2018. S. 18–24. DOI: 10.31471/1993-9981-2018-2(41)- 18-24.
  5. Golovan M. M., Zdolbitska N. V., Lishchina V. O., Grinuk S. V. «Analiz productivnosty systemy avtomatichnoho posicionuvanna sonachnih paneley», 2020. S. 23–29. DOI: https://doi.org/10.36910/6775-2524- 0560-2020-41-04.
  6. Mitrofanov S. V., Baykasenov D. K. and Nemaltsev A. U. «Operation of Solar Power Plant with Solar Tracker in Orenburg Region During the Winter», 2019 International Ural Conference on Electrical Power Engineering (UralCon), 2019. Pp. 138–142. DOI: 10.1109/URALCON.2019.8877677.
  7. Mohamadi M., Roshandel E., Gheasaryan S. M. and Khoshkalamyan P. «Stability and power factor improvement in a power system with simultaneous generation of steam and solar power plant», 2016 6th Conference on Thermal Power Plants (CTPP), 2016. Pp. 83–88. DOI: 10.1109/CTPP.2016.7483058.
  8. Tiwari S., Kewat S. and Singh B. «UPQC Controlled Solar PV-Hydro Battery Microgrid», 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2020. Pp. 1–5. DOI: 10.1109/PEDES49360.2020.9379764.
  9. Xing C., Xi X., He X. and Liu M. «Research on the MPPT Control Simulation of Wind and Photovoltaic Complementary Power Generation System», 2020 IEEE Sustainable Power and Energy Conference (iSPEC), 2020. Pp. 1058–1063. DOI: 10.1109/iSPEC50848.2020.9350965.
  10. Anuradha A., Yadav S. and Sinha S. «Solar-Wind Based Hybrid Energy System: Modeling and Simulation», 2021 4th International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE), 2021. Pp. 586–570. DOI: 10.1109/RDCAPE52977.2021.9633590.
  11. Datasheet, «Raspberry Pi 4 Model B», June 2019. URL: https://datasheets.raspberrypi. com/rpi4/raspberry-pi-4-datasheet.pdf (accessed: 29 September 2022).