Combined Control of Unmanned Aerial Vehicles Under Electronic Warfare Conditions

2025;
: pp. 84 - 99
Authors:
1
Lviv Polytechnic National University, Computer Engineering Department, Ukraine

We present the concept, architecture, and algorithm of a combined UAV control scheme designed for operation under electronic warfare (EW). The core idea is a “silent” ingress to the task area via a fiber- optic link–carrying command-and-control (C2) and video with no RF emissions–and a return over a protected radio link employing anti-jamming techniques (FHSS/DSSS, narrow-beam antennas, adaptive modulation/coding, power control, AES-GCM cryptography). Onboard EO/IR perception (daylight EO RGB camera and thermal IR camera) is implemented with image fusion to improve robustness under varying illumination, smoke, or fog. GNSS-denied navigation relies on visual-inertial odometry (VIO) and lidar odometry with barometric and magnetometer corrections, reducing drift and ensuring controllability without satellite signals.

Deterministic link switching is realized by a finite state machine (FSM) with formalized criteria: fiber-based ingress, task execution, safe detachment, radio-based return, and landing/termination. We provide the structural model, inter-component interfaces, and software stack (message bus, link-mana- gement modules, sensor fusion, video streaming, security, logging).

Prototype test results (platform LX1500; 40 km mission: 20 km over fiber + 20 km over radio) show: Packet Loss Rate in RADIO_MODE reduced from 18–25 % (under jamming) to 3–5 % after JAMMING MITIGATION; SNR ≥ 10 dB restored within RADIO_RECOVERY with hysteresis τ_hold = 15 s; end-to- end video latency of 25–35 ms over fiber and 120–180 ms over radio (with C2/telemetry priority); GNSS- denied navigation drift ≤ 0.7 % of distance traveled; mission success probability 96 % over N = 50 range runs. The proposed approach increases the resilience of control and communications, reduces mission- abort risk, and scales across UAV classes (reconnaissance, delivery, surveillance).

  1. Aref M. A., Jayaweera S. K., Yepez E. Survey on cognitive anti-jamming communications. IET Commu- nications. 2020. 14(18). 3110–3127. DOI: 10.1049/iet-com.2020.0024.
  2. Qin T., Li P., Shen S. VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator. IEEE Trans. on Robotics. 2018. 34(4). 1004–1020. DOI: 10.1109/TRO.2018.2853729.
  3. Zhang J., Singh S. LOAM: Lidar Odometry and Mapping in Real’time. Robotics: Science and Systems X, 2014. DOI: 10.15607/RSS.2014.X.007. (9 pp.).
  4. Ma J., Ma Y., Li C. Infrared and visible image fusion methods and applications: A survey. Information Fusion. 2019. 45. 153–178. DOI: 10.1016/j.inffus.2018.02.004.
  5. Agrawal G. P. Fiber-Optic Communication Systems, 5th ed., Wiley, 2021. DOI: 10.1002/9781119737391. (544 pp.).
  6. Marques M. N., Barros J. M. D., Menezes J. M. P. Tethered Unmanned Aerial Vehicles-A Systematic Review. Robotics. 2023. 12(4). 117. DOI: 10.3390/robotics12040117. (≈28 pp.).
  7. Dworkin M. Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC. NIST SP 800-38D, 2007. DOI: 10.6028/NIST.SP.800-38D. (≈52 pp.).
  8. Macenski S., Foote T., Gerkey B. et al. Robot Operating System 2: Design, architecture, and uses in the wild. Science Robotics. 2022. 7(66), eabm6074. DOI: 10.1126/scirobotics.abm6074. (article no.).
  9. Kim W., Chen X., Jo J. A., Applegate B. E. Lensless, ultra-wideband fiber optic rotary joint for biomedical applications. Optics Letters. 2016. 41(9). 1973–1976. DOI: 10.1364/OL.41.001973.
  10. Jing W., Cai Z., Song L. Design and implementation of a broadband optical rotary joint. Optics Express. 2004. 12(17). 4088–4099. DOI: 10.1364/OPEX.12.004088.