Conceptual Model of the Information System for Indoor Navigation and Positioning Based on Two-Dimensional Matrix Codes

2025;
: pp. 114 - 129
1
Lviv Polytechnic National University, Information Systems and Network
2
Lviv Polytechnic National University, Information Systems and Networks Department, Lviv, Ukraine

In densely populated areas or indoors, the accuracy of GPS signals can be significantly reduced. This is because satellite signals can be obscured by buildings and reflected from them, which creates so- called multi-layer reflections. As a result, the system can incorrectly determine the position, which leads to a significant error. This creates serious problems for indoor navigation, especially if high accuracy is required. Alternative indoor navigation technologies are being actively developed to solve this problem. Since Wi-Fi routers are often found in indoor environments, they can be used to determine location. This allows you to choose the approximate location with an accuracy of several meters. However, this system requires many access points for accurate operation, which is a problem in the case of Lviv Polytechnic National University buildings. There is incomplete or no coverage, large wall thickness, underground passages between buildings, and classrooms in underground rooms. Therefore, there was an objective need to develop a project for the implementation of navigation and positioning in enclosed spaces by developing a mobile application for searching for classrooms and offices, forming and visualizing routes based on two-dimensional matrix codes and taking into account the Location Services indicators overlaid on the plans of the academic buildings of Lviv Polytechnic National University. It is proposed that a QR or Aztec code be used to determine the location and provide brief information about a particular office or classroom of an academic building. The location can also be set manually or determined using data from the saved plans of the university buildings and campus. The Dijkstra algorithm is used to calculate the shortest path. This made it possible to develop a conceptual model of the information system, considering the stakeholders' requirements.

  1. (2025).   Parisaeroport.fr.    https://www.parisaeroport.fr/en/passengers/services/book-a-service
  2. AbuSalim, S. W. G., Ibrahim, R., Zainuri Saringat, M., Jamel, S., & Abdul Wahab, J. (2020). Comparative Analysis between Dijkstra and Bellman-Ford Algorithms in Shortest Path Optimization. IOP Conference Series: Materials Science and Engineering, 917, 012077. https://doi.org/10.1088/1757-899x/917/1/012077
  3. Alpert, M., & Onyshchenko, V. (2023). Finding the best shortest path algorithm for smart suitcase. Management of Development of Complex Systems, 55, 92–97. https://doi.org/10.32347/2412-9933.2023.55.92-97
  4. Bao, M. (2005). Analysis and Design Principles of MEMS Devices. Elsevier.
  5. Barnes, J., Rizos, C., Wang, J., Small, D., Voigt, G., & Gambale, N. (2003). High Precision Indoor and Outdoor Positioning        using        LocataNet. Journal        of        Global        Positioning        Systems, 2(2),        73–82.https://doi.org/10.5081/jgps.2.2.73
  6. Caffery, J., & Stuber, G. (1998). Overview of radiolocation in CDMA cellular systems. IEEE Communications Magazine, 36(4), 38–45. https://doi.org/10.1109/35.667411
  7. Chemes, V. S., & Vetrov, O. S. (2024). Comparison of shortest path search algorithms. Computer technologies of data processing, 284-287. https://jktod.donnu.edu.ua/article/view/16287
  8. de Schipper, E., Feskens, R., & Keuning, J. (2021). Personalized and Automated Feedback in Summative Assessment Using Recommender Systems. Frontiers in Education, 6. https://doi.org/10.3389/feduc.2021.652070
  9. Elsanhoury, M., Makela, P., Koljonen, J., Valisuo, P., Shamsuzzoha, A., Mantere, T., Elmusrati, M., & Kuusniemi, H. (2022). Precision positioning for smart logistics using Ultra-Wideband Technology-Based indoor navigation: a review. IEEE Access, 10, 44413–44445. https://doi.org/10.1109/access.2022.3169267
  10. Explorer App | American Museum of Natural History. (2019). American Museum of Natural History. https://www.amnh.org/plan-your-visit/explorer
  11. Falas, T., & Kashani, H. (2007, March 1). Two-Dimensional Bar-Code Decoding with Camera-Equipped Mobile Phones. IEEE Xplore. https://doi.org/10.1109/PERCOMW.2007.119
  12. Flutter. (2024). Flutter - Beautiful native apps in record time. Flutter.dev; Google. https://flutter.dev/
  13. Google. (2012, May 9). Shop and travel smarter with Google Maps 6.7 for Android - now with Google Offers and indoor walking directions. Google Lat Long. https://maps.googleblog.com/2012/05/shop-and-travel-smarter-with- google.html
  14. Grewal, M. S., Andrews, A. P., & Bartone, C. G. (2020). Global Navigation satellite systems, inertial navigation, and integration. https://doi.org/10.1002/9781119547860
  15. Hahn, H. I., & Jung, J. G. (2006). TWO-DIMENSIONAL BARCODE SYMBOLOGY PDF417 IMPROVING PERFORMANCE    OF    THE    DECODER    FOR.    Kluwer    Academic    Publishers    eBooks,    233–237.https://doi.org/10.1007/1-4020-4543-3_28
  16. Huo, L., Zhu, J., Singh, P. K., & Pavlovich, P. A. (2021). Research on QR image code recognition system based on artificial intelligence algorithm. Journal of Intelligent Systems, 30(1), 855-867. https://doi.org/10.1515/jisys- 2020-0143
  17. ISO/IEC 24778:2024. (n.d.-b). Retrieved from https://www.iso.org/standard/82441.html
  18. Jiang, H., Li, J., Zhao, P., Zeng, F., Xiao, Z., & Iyengar, A. (2021). Location privacy-preserving mechanisms in location-based    services:    A    comprehensive    survey. ACM    Computing    Surveys    (CSUR), 54(1),    1-36.https://doi.org/10.1145/3423165
  19. Khalil, J. (2023, August 28). Syntony doubles multi-GNSS simulation solution computation power - GPS World. GPS    World.    https://www.gpsworld.com/syntony-doubles-multi-gnss-simulation-solution-computation-power/
  20. Khalil, J. (2025, February 10). EUSPA launches GNSS and secure SATCOM user technology report - GPS World. GPS    World.    https://www.gpsworld.com/euspa-launches-gnss-and-secure-satcom-user-technology-report/
  21. Khalil, J. (2025, February 11). Taoglas launches multi-band GNSS antennas - GPS World. GPS World. https://www.gpsworld.com/taoglas-launches-multi-band-gnss-antennas/
  22. Khalil, J. (2025, February 14). Topcon launches GNSS receiver for precision applications - GPS World. GPS World.       https://www.gpsworld.com/topcon-launches-gnss-receiver-for-precision-applications/
  23. Khalil, J. (2025, February 19). MIKROE unveils Click Board for precision applications - GPS World. GPS World. https://www.gpsworld.com/mikroe-unveils-click-board-for-precision-applications/
  24. Khalil, J. (2025, February 4). GMV to develop Galileo High Accuracy Service data generator - GPS World. GPS World.       https://www.gpsworld.com/gmv-to-develop-galileo-high-accuracy-service-data-generator/
  25. Khalil, J. (2025, January 23). FrontierSI releases LEO PNT state of the market report - GPS World. GPS World. https://www.gpsworld.com/frontiersi-releases-leo-pnt-state-of-the-market-report/
  26. Kogure, S., Kawazu, Y., & Sakai, T. (2020). QuasiZenith Satellite System. Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications, 1, 187- 204.    https://doi.org/10.1002/9781119458449.ch8
  27. Ladd, A., Bekris, K., Rudys, A., Wallach, D., & Kavraki, L. (2004). On the feasibility of using wireless ethernet for indoor localization. IEEE Transactions on Robotics and Automation, 20(3), 555–559. https://doi.org/10.1109/tra.2004.824948
  28. LaMarca, A., & De Lara, E. (2022). Location systems: An introduction to the technology behind location awareness. Springer Nature.
  29. Manglik, R. (2024). Global Navigation Satellite System. EduGorilla Publication.
  30. Marbutt, J., & Schiefer, R. (2011). Windows Phone 7 Silverlight Cookbook. Packt Publishing Ltd.
  31. Misra, P., & Enge, P. (2006). Global positioning system: Signals, measurements and performance (lincoln, ma: Ganga. Global Positioning System: Signals, Measurements and Performance Lincoln, MA: Ganga.
  32. Morton, Y. J., van Diggelen, F., Spilker Jr, J. J., Parkinson, B. W., Lo, S., & Gao, G. (Eds.). (2021). Position, navigation, and timing technologies in the 21st century: Integrated satellite navigation, sensor systems, and civil applications, volume 1. John Wiley & Sons.
  33. Motroni, A., Buffi, A., & Nepa, P. (2021). A survey on indoor vehicle localization through RFID technology. IEEE Access, 9, 17921–17942. https://doi.org/10.1109/access.2021.3052316
  34. Neelima, K., & Subhas, C. (2022). Half diagonal matrix codes for reliable embedded memories. International journal of health sciences, (II), 11664-11677. https://doi.org/10.53730/ijhs.v6ns2.8117
  35. Ni, L. M., Liu, Y., Lau, Y. C., & Patil, A. P. (2004). LANDMARC: Indoor location sensing using active RFID.Wireless Networks, 10(6), 701–710. https://doi.org/10.1023/b:wine.0000044029.06344.dd
  36. Normand, N., & Viard-Gaudin, C. (1994). A two-dimensional bar code reader. In Proceedings of the 12th IAPR International Conference on Pattern Recognition, Vol. 2-Conference B: Computer Vision & Image Processing. (Cat. No. 94CH3440-5) (pp. 201-203). IEEE. https://doi.org/10.1109/icpr.1994.577158
  37. Parush, A. (n.d.). Conceptual Design for Interactive Systems: Designing for Performance and User Experience. Morgan Kaufmann.
  38. PMI. (2021). A Guide to the Project Management Body of Knowledge (PMBOK® Guide) – Seventh Edition and the Standard for Project Management (7th ed.). Project Management Institute.
  39. Saha, S., Chaudhuri, K., Sanghi, D., & Bhagwat, P. (2003). Location determination of a mobile device using IEEE802.11 b access point signals. In 2003 IEEE Wireless Communications and Networking, 2003. WCNC 2003. (Vol. 3, pp. 1987-1992). IEEE. https://doi.org/10.1109/wcnc.2003.1200692
  40. Sahoo, S. K., & Choudhury, B. B. (2023). A review of methodologies for path planning and optimization of mobile robots. Journal of process management and new technologies, 11(1-2), 122-140. https://doi.org/10.5937/jpmnt11- 45039
  41. Santi, S., De Koninck, T., Daneels, G., Lemic, F., & Famaey, J. (2021). Location-based vertical handovers in wi- fi networks with ie 802.11 ah. IEEE Access, 9, 54389-54400. https://doi.org/10.1109/access.2021.3071639
  42. Siklichuk, A. S., & Senyk, I. O. (2024). Application of the Dijkstra algorithm for finding the optimal route. Applied aspects of modern interdisciplinary research, 181-184. https://jpasmd.donnu.edu.ua/article/view/14814
  43. Son, K., & Choi, W. (2024). Coded Matrix Computation in Wireless Network. IEEE Transactions on Wireless Communications, 23(6), 6394-6410. https://doi.org/10.1109/twc.2023.3331263
  44. Sondhi, N. A., & Kumar, N. D. R. (2022). QR codes in Education : a review. International Journal of Scientific Research in Science and Technology, 193–205. https://doi.org/10.32628/ijsrst229118
  45. The OMG® Specifications Catalog. (n.d.). Www.omg.org. Retrieved March 11, 2023, from https://www.omg.org/spec/
  46. Thrun, S. (2000). Probabilistic Algorithms in Robotics. AI Magazine, 21(4), 93–109. https://doi.org/10.1609/aimag.v21i4.1534
  47. University Presentation Materials | Lviv Polytechnic National University. (2025). Lpnu.ua. https://lpnu.ua/en/lviv- polytechnic/university-presentation-materials
  48. Veres, O., Kunanets, N., Pasichnyk, V., Veretennikova, N., Korz, R., & Leheza, A. (2019, September 1). Development and Operations Modern Paradigm of the Work of IT Project Teams. IEEE Xplore. https://doi.org/10.1109/STC-CSIT.2019.8929861
  49. Wang, X. Z. (2018). The comparison of three algorithms in shortest path issue. Journal of Physics Conference Series, 1087, 022011.
  50. Waters, J. (2012). QR codes for dummies. John Wiley & Sons.
  51. Yamasaki, Y., & Noguchi, N. (2023). Research on autonomous driving technology for a robot vehicle in mountainous farmland using the Quasi-Zenith Satellite System. Smart Agricultural Technology, 3, 100141. https://doi.org/10.1016/j.atech.2022.100141
  52. Yang, Z. (2012). Windows Phone 7 XNA Cookbook. Packt Publishing Ltd. (Yang, 2012)
  53. Yudanto, R., Cheng, J., Hostens, E., Van Der Wilt, M., & Cavey, M. V. (2023). Ultra-Wide-Band localization: advancements in device and system calibration for enhanced accuracy and flexibility. IEEE Journal of Indoor and Seamless Positioning and Navigation, 1, 242–253. https://doi.org/10.1109/jispin.2023.3339602