: 169-173
Lviv Polytechnic National University
Lviv Polytechnic National University
Lviv Polytechnic National University

Water-dispersed fluorescence nanomaterials based on boron nitride nanotubes and grafted copolymer brushes (poly(acrylic acid-co-fluorescein acrylate) were successfully fabricated in a two-step process. The functionalization of BNNTs was confirmed by spectroscopic, gravimetric and imaging techniques. In contrast to “pure” BNNTs, functionalized BNNTs demonstrate intense green fluorescence emission at 520 nm. The developed hybrid structure can potentially be used for cellular imaging, as “smart” surfaces, nanotransducers and nanocarriers.

1. Cavallaro, G., Lazzara, G., Milioto, S., Parisi, F., Evtugyn, V., Rozhina, E., Fakhrullin, R. (2018). Nanohydrogel formation within the halloysite lumen for triggered and sustained release. ACS Appl. Mater. Interfaces, 10, 8265. https://doi.org/10.1021/acsami.7b19361
2. Marchenko, I., Yashchenok, A., German, S., Inozemtseva, O., Gorin, D., Bukreeva, T., Mohwald, H., Skirtach, A. (2010). Polyelectrolytes: Influence on evaporative self-assembly of particles and assembly of multilayers with polymers, nanoparticles and carbon nanotubes. Polymers, 2, 690. https://doi.org/10.3390/polym2040690
3. Lisuzzo, L., Cavallaro, G., Lazzara, G., Milioto, S., Parisi, F. (2018). Stability of halloysite, imogolite, and boron nitride nanotubes in solvent media. Appl. Sci. (Switzerland), 8, 1068. https://doi.org/10.3390/app8071068
4. Ciofani, G., Genchi, G., Liakos, I., Athanassiou, A., Dinucci, D., Chiellini, F., Mattoli, V. (2012). A simple approach to covalent functionalization of boron nitride nanotubes. J. Colloid Interface Sci., 374, 308. https://doi.org/10.1016/j.jcis.2012.01.049
5. Zhi, C., Bando, Y., Tang, C., Xie, R., Sekiguchi, T., Golberg, D. (2005). Perfectly dissolved boron nitride nanotubes due to polymer wrapping. J. Am. Chem. Soc., 127, 15996. https://doi.org/10.1021/ja053917c
6. Terao, T., Zhi, C., Bando, Y., Mitome, M., Tang, C., Golberg, D. (2010). Alignment of boron nitride nanotubes in polymeric composite films for thermal conductivity improvement. J. Phys. Chem. C, 114, 4340. https://doi.org/10.1021/jp911431f
7. Gao, Z., Zhi, C., Bando, Y., Golberg, D., Serizawa, T. (2014). Noncovalent functionalization of boron nitride nanotubes in aqueous media opens application roads in nanobiomedicine. Nanobiomedicine, 1, 7. https://doi.org/10.5772/60000
8. Ejaz, M., Rai, S.C., Wang, K., Zhang, K., Zhou, W., Grayson, S.M. (2014). Surface-initiated atom transfer radical polymerization of glycidyl methacrylate and styrene from boron nitride nanotubes, J. of Materials Chem. C, 2,  4073. https://doi.org/10.1039/c3tc32511c.
9. Stetsyshyn, Y., Kostruba, A., Harhay, K., Donchak, V., Ohar, H., Savaryn, V., Kulyk, B., Ripak, L., Nastishin, Y. (2015). Multifunctional cholesterol-based peroxide for modification of amino-terminated surfaces: Synthesis, structure and characterization of grafted layer. Appl. Surf. Sci., 347, 299. https://doi.org/10.1016/j.apsusc.2015.04.110
10. Stetsyshyn, Y., Awsiuk, K., Kusnezh, V., Raczkowska, J., Jany, B., Kostruba, A., Harhay, K., Ohar, H., Lishchynskyi, O., Shymborska, Y., Kryvenchuk, Y., Krok, F., Budkowski, A. (2019). Shape-Controlled synthesis of silver nanoparticles in temperature-responsive grafted polymer brushes for optical applications. Appl. Surf. Sci., 463, 1124.https://doi.org/10.1016/j.apsusc.2018.09.033
11. Kalay, S., Stetsyshyn, Y., Lobaz, V., Harhay, K., Ohar, H., Çulha, M. (2015) Water-dispersed thermo-responsive boron nitride nanotubes: Synthesis and properties. Nanotechnology, 27, 035703. https://doi.org/10.1088/0957-4484/27/3/035703.
12. Song, A., Zhang, J., Zhang, M., Shen, T., Tang, J. (2000). Spectral properties and structure of fluorescein and its alkyl derivatives in micelles. Colloids Surf. A, 167, 253. https://doi.org/10.1016/s0927-7757(99)00313-1
13. Martin, M., Lindqvist, L. (1975). The pH dependence of fluorescein fluorescence. J. Lumin. 10, 381. https://doi.org/10.1016/0022-2313(75)90003-4