Antioxidant activity of heterocyclic amino containing derivatives of naphthoquinone and their compositions with surface-active rhamnolipids

2021;
: 109-115
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Institute of Physical-Organic Chemistry and Coal Chemistry named after L. M. Lytvynenko of the National Academy of Sciences of Ukraine

 Composite preparations based on heterocyclic amine-containing naphthoquinone derivatives and surfactant rhamnolipids were obtained. The intensity of the processes of lipid peroxidation (LPO), oxidative modification of proteins (OMB) and radical-absorbing activity against 1,1-diphenyl-2-picrylhydrazyl (DFPG) was studied. Compounds exhibiting high antioxidant activity against LPO and OMB processes were identified, namely: 2-[(6-(4-fluorophenyl-5-oxo-2,5-dihydro-1,2,4-triazin-3-yl) phenyl)amino]naphthalene-1,4-dione 1d and its composite preparation with rhamnolipid 1d + RL. It was found that all synthesized compounds show antioxidant activity in LPO processes. 

1. Kasote, D. M., Katyare, S. S., Hegde, M. V., & Bae, H. (2015). Significance of antioxidant potential of plants and its relevance to therapeutic applications. International journal of biological sciences, 11(8), 982. doi:10.7150/ijbs.12096
https://doi.org/10.7150/ijbs.12096
2. Zhu, X., Raina, A. K., Lee, H. G., Casadesus, G., Smith, M. A., & Perry, G. (2004). Oxidative stress signalling in Alzheimer's disease. Brain research, 1000(1-2), 32-39. doi:10.1016/j.brainres.2004.01.012
https://doi.org/10.1016/j.brainres.2004.01.012
3. Peterhans, E. (1997). Oxidants and antioxidants in viral diseases; disease mechanisms and metabolic regulation. J. Nutr, 127, 962. doi:10.1093/jn/127.5.962S
https://doi.org/10.1093/jn/127.5.962S
4. Devasagayam, T. P. A., & Kesavan, P. C. (1996). Radioprotective and antioxidant action of caffeine : mechanistic considerations. Indj exp boil, 34(4), 291-297.
5. Carocho, M., & Ferreira, I. C. (2013). A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food and chemical toxicology, 51, 15-25. doi:10.1016/j.fct.2012.09.021
https://doi.org/10.1016/j.fct.2012.09.021
6. Silakari, P., & Piplani, P. (2020). p-Benzoquinone as a Privileged Scaffold of Pharmacological Significance: A Review. Mini reviews in medicinal chemistry, 20(16), 1586-1609. doi:10.2174/1389557520666200429101451
https://doi.org/10.2174/1389557520666200429101451
7. Gudiña, E. J., Rangarajan, V., Sen, R., & Rodrigues, L. R. (2013). Potential therapeutic applications of biosurfactants. Trends in pharmacological sciences, 34(12), 667-675. doi:10.1016/j.tips.2013.10.002
https://doi.org/10.1016/j.tips.2013.10.002
8. Müller, M. M., Kügler, J. H., Henkel, M., Gerlitzki, M., Hörmann, B., Pöhnlein, M., ... & Hausmann, R. (2012). Rhamnolipids -next generation surfactants? Journal of biotechnology, 162(4), 366-380. doi:10.1016/j.jbiotec. 2012.05.022
https://doi.org/10.1016/j.jbiotec.2012.05.022
9. Polish, N., Nesterkina, M., Marintsova, N., Karkhut, A., Kravchenko, I., Novikov, V., & Khairulin, A. (2020). Synthesis and Evaluation on Anticonvulsant and Antidepressant Activities of Naphthoquinone Derivatives Containing Pyrazole and Pyrimidine Fragments. Acta Chimica Slovenica. doi:10.17344/acsi.2020.5938
https://doi.org/10.17344/acsi.2020.5938
10. Polish, N. V., Marintsova, N. G., Zhura¬khivska, L. R., Novikov, V. P., Vovk, M. V. (2019). Synthesis and prediction of the biological activity of heterocyclic n-derivatives naphthoquinone. Chemistry, Technology and Application of Substances, 2 (1), 69-75. doi:http://doi.org/10.23939/ctas2019.01.069
https://doi.org/10.23939/ctas2019.01.069
11. Polish, N. V., Marintsova, N. G., Karkhut, A. I., Kovalenko, S. I., Novikov, V. P. (2020). Synthesis of new 1,2,4-triazine- And 1,2,4-triazole-containing 1,4-naphthoquinone derivatives and the study of their biological activity. Voprosy Khimii i Khimicheskoi Tekhnologii, 5, 73-80. doi: 10.32434/0321-4095-2020-132-5-73-80
https://doi.org/10.32434/0321-4095-2020-132-5-73-80
12. Fainerman, V. B., & Miller, R. (2011). Maximum bubble pressure tensiometry: theory, analysis of experimental constrains and applications. Bubble and drop interfaces, 75-118. Brill.
https://doi.org/10.1163/ej.9789004174955.i-558.38
13. Lakin, A. N. (1990). Kurs variatsionnoy statistiki. K.: Vishcha shkola.
14. Molyneux, P. (2004). The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin. J. sci. technol, 26(2), 211-219.
15. Michiels, C., & Remacle, J. (1991). Cytotoxicity of linoleic acid peroxide, malondialdehyde and 4-hydroxynonenal towards human fibroblasts. Toxicology, 66(2), 225-234. doi:10.1016/0300-483X(91)90221-L
https://doi.org/10.1016/0300-483X(91)90221-L
16. Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199-1200.
https://doi.org/10.1038/1811199a0