New mixed manganites-chromites RMn1–xCrxO3 and manganites-gallates RMn1–xCrxO3

: 74-81
Lviv Polytechnic National University
Lviv Polytechnic National University
Lviv Polytechnic National University
Lviv Polytechnic National University

Nanocrystalline powders of new mixed manganites-chromites  RMn0.5Cr0.5O3 (R = Pr, Sm, Er) and manganites-gallates  RMn1-xGaxO3 (R = Pr, Sm, Eu;  x = 0.25, 0.5) with orthorhombic perovskite structure were obtained by sol-gel citrate route. Crytal structure parameters and microstructural parameters of the materials were established depending on the synthesis conditions. Based on the resuts obtained formation of conntinuos solid solutions  RMn1-xCrxO3 in the  RMnO3-RCrO3 systems and limited solid solitions in the RMnO3-RGaO3 systems were predicted.  

1. Schmid, H. (1994). Multi-ferroic magnetoelectrics. Ferroelectrics, 162(1), 317-338.
2. Salamon, M. B., Jaime M. (2001). The physics of manganites: Structure and transport. Reviews of Modern Physics, 73(3), 583-628.
3. Yakel, H. L. (1955). On the structures of some compounds of the perovskite type. Acta Crystalogphica, 8, 394-398.
4. Alonso, J. A., Martinez-Lope, M. J., Casais, M. T., Fernandez-Diaz, M. T. (2000). Evolution of the Jahn-Teller distortion of MnO6 octahedra in RMnO3 perovskites (R = Pr, Nd, Dy, Tb, Ho, Er, Y): A Neutron Diffraction Study. Inorganic Chemistry, 39(5), 917-923.
5. Yakel, H. L., Koehler W. C. (1963). On the crystal structure of the manganese (III) trioxides of the heavy lanthanides and yttrium. Acta Crystalogphica, 16, 957-962.
6. Carp, O., Patron, L., Ianculescu, A., Pasuk, J., Olar, R. (2003). New synthesis routes for obtaining dysprosium manganese perovskites. Journal of Alloys and Compounds, 351, 314-318.
7. Geller, S., Raccah, P. M. (1970). Phase Transitions in Perovskitelike Compounds of the Rare Earths. Physical Review B, 2(4), 1167-1172.
8. Sardar, K., Lees, M. R., Kashtiban R. J., Sloan J., Walton R. I. (2011). Direct hydrothermal synthesis and physical properties of rare-earth and yttrium orthochromite perovskites. Chemistry of Materials, 23, 48-56.
9. Prado-Gonjal, J., Schmidt R., Romero J. J., Ávila D., Amador U., Moran E. (2013). Microwave-assisted synthesis, microstructure, and physical properties of rare-earth chromites. Inorganic Chemistry, 52, 313-320.
10. Vasylechko, L., Senyshyn, A., Bismayer, U. Perovskite-Type Aluminates and Gallates, in Handbook on the Physics and Chemistry of Rare Earths, K. A. Gschneidner, Jr., J. C.G. Bünzli and V.K. Pecharsky, eds., North-Holland: Netherlands, 39 (2009), 148-153.
11. Hemberger, J., Lobina, S., Krug von Nidda, H.-A., Tristan, N., Ivanov, V. Yu., Mukhin, A. A., Balbashov, A. M., and Loid, A. (2004). Complex interplay of 3d and 4f magnetism in La1-xGdxMnO3. Physical Review B, 70, 024414.
12. Sekhar, M. Ch., Lee, S., Choi, G., Lee, Ch., and Park, J.-G. (2005). Doping effects of hexagonal manganites Er1-xYxMnO3 with triangular spin structure. Physical Review B, 72, 014402.
13. Hemberger, J., Schrettle, F., Pimenov, A., Lunkenheimer, P., Ivanov, V. Yu., Mukhin, A. A., Balbashov, A. M. and A. Loidl. (2007). Multiferroic phases of Eu1-xYxMnO3. Physical Review B, 75, 035118.
14. Kallel, N., Fröhlich, K., Oumezzine, M., Ghedira, M., Vincent, H., and Pignard, S. (2004). Magnetism and giant magnetoresistance in La0.7Sr0.3Mn1-xMxO3 (M = Cr, Ti) systems. Physica Status Solidi, 1(7), 1649-1654.
15. Akselrud, L., Grin, Yu. (2014). WinCSD: software package for crystallographic calculations (Version 4). Journal of Applied Crystallography, 47, 803-805.