Рotentiometric and conductometric determination of amine and acid numbers of reaction mixture from fatty acid amidation

2021;
: 8-18
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University

The possibility of simultaneous potentiometric and conductometric titration is considered to determine the acid (A.N.) and amine (AM.N.) numbers of the amidation reaction mixture for technical fatty acids (F.A.) by diethylenetriamine (DETA). Interpretation of titration curves was performed on the basis of model mixtures for DETA and F.A. industrial sample. The obtained results indicate the possibility of determining A.N. and AM.N. values by sequential titration of one sample for industrial organic products and amidation reaction mixtures.

  1. 1. Hill, K. (2001). Fats and Oils as Oleochemical Raw Materials. Journal of Oleo Science, 50(5), 433-444. doi:10.5650/jos.50.433
    https://doi.org/10.5650/jos.50.433
    2. Lee, C. S., Ooi, T. L., Chuah, C. H., & Ahmad, S. (2007). Synthesis of Palm Oil-Based Diethanolamides. Journal of the American Oil Chemists Society, 84(10), 945-952. doi:10.1007/s11746-007-1123-8
    https://doi.org/10.1007/s11746-007-1123-8
    3. Awasthi, N. P., & Singh, R. P. (2009). Microwave-assisted facile and convenient synthesis of fatty acid amide (erucamide): Chemical-catalyzed rapid method. European Journal of Lipid Science and Technology, 111(2), 202-206. doi:10.1002/ejlt.200800186
    https://doi.org/10.1002/ejlt.200800186
    4. Kramarev, S., & Husanov, A. (2016). Influence of vacuum on kinetic of low quality rapeseed oil amidation by aminoethylethanolamine. Eastern-European Journal of Enterprise Technologies, 4(6(82)), 12. doi:10.15587/ 1729-4061.2016.74856
    https://doi.org/10.15587/1729-4061.2016.74856
    5. ДСТУ ISO 2114:2014. Пластмаси (складні поліефірні смоли) та фарби і лаки (зв'язувальні). Метод визначання загального кислотного числа (ISO 2114:2000, IDT)
    6. ДСТУ 4350: 2004. Олії. Методи визначання кислотного числа (ISO 660: 1996, NEQ).
    7. ASTM D 2073-92 (Reapproved 1998) Standard Test Methods for Total, Primary, Secondary, and Tertiary Amine Values of Fatty Amines, Amidoamines, and Diamines by Referee Potentiometric Method.https://www.scribd. com/document/273071782/D2073-Total-Primary-Secondary- And-Tertiary-Amine-Values-Of)
    8. ASTM D2074 - 07(2013) Standard Test Methods for Total, Primary, Secondary, and Tertiary Amine Values of Fatty Amines by Alternative Indicator Method https://www.astm.org/Standards/D2074.htm
    9. Cacace, C., Elia, L., Elia, V., Napoli, E., & Niccoli, M. (2009). Conductometric and pHmetric titrations of Extremely Diluted Solutions using HCl solutions as titrant. Journal of Molecular Liquids, 146(3), 122-126. doi:10.1016/j.molliq.2009.02.012
    https://doi.org/10.1016/j.molliq.2009.02.012
    10. Elia, V., Napoli, E., & Niccoli, M. (2009). A molecular model of interaction between extremely diluted solutions and NaOH solutions used as titrant. Journal of Molecular Liquids, 148(1), 45-50. doi:10.1016/ j.molliq.2009.06.005
    https://doi.org/10.1016/j.molliq.2009.06.005
    11. Roger, G. M., Durand-Vidal, S., Bernard, O., Mériguet, G., Altmann, S., & Turq, P. (2010). Characterization of humic substances and polyacrylic acid: A high precision conductimetry study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 356(1-3), 51-57. doi:10.1016/j.colsurfa.2009.12.029
    https://doi.org/10.1016/j.colsurfa.2009.12.029
    12. Ghorbani, R., Ghasemi, J., & Abdollahi, B. (2006). Conductometric simultaneous determination of acetic acid, monochloroacetic acid and trichloroacetic acid using orthogonal signal correction-partial least squares. Journal of Hazardous Materials, 131(1-3), 13-18. doi:10.1016/j.jhazmat.2005.09.016
    https://doi.org/10.1016/j.jhazmat.2005.09.016
    13. Coelho, L. H., & Gutz, I. G. (2006). Trace analysis of acids and bases by conductometric titration with multiparametric non-linear regression. Talanta, 69(1), 204-209. doi:10.1016/j.talanta.2005.09.025
    https://doi.org/10.1016/j.talanta.2005.09.025
    14. Riggle, J. (2002). Conductometric characterization of dissolved humic materials. Talanta, 57(3), 519-526. doi:10.1016/s0039-9140(02)00052-8
    https://doi.org/10.1016/S0039-9140(02)00052-8
    15. Riggle, J., & Wandruszka, R. V. (2004). Dynamic conductivity measurements in humic and fulvic acid solutions. Talanta, 62(1), 103-108. doi:10.1016/ s0039-9140(03)00404-1
    https://doi.org/10.1016/S0039-9140(03)00404-1
    16. Vostokov, V. M. (2009). Kriterii instrumental'nogo kislotno-osnovnogo titrovaniya rastvorov elektrolitov. Vestnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo, No. 3, 100-106. Retrieved from https://cyberleninka.ru/article/n/kriterii-instrumentalnogo-kislotno-osn....
    17. Fras, L., Laine, J., Stenius, P., Stana-Kleinschek, K., Ribitsch, V., & Doleсek, V. (2004). Determination of dissociable groups in natural and regenerated cellulose fibers by different titration methods. Journal of Applied Polymer Science, 92(5), 3186-3195. doi:10.1002/app.20294
    https://doi.org/10.1002/app.20294
    18. Kowalczyk-Marzec, A., Kurzawa, M., Szydlowska-Czerniak, A., & Szlyk, E. (2002). Conductometric Determination of Phenothiazine Derivatives by Precipitation Titration. Chemia Analityczna (Warsaw), 47, 613-618. Retrieved from http://beta.chem.uw.edu.pl/chemanal/PDFs/ 2002/CHAN2002V47P00613.pdf
    19. Kulichenko, S. A., & Fesenko, S. A. (2002). Titrimetric Determination of Furosemide Using Aqueous-Micellar Solutions of Surfactants. Journal of Analytical Chemistry, 57(3), 231-234. doi:10.1023/a:1014444332118
    https://doi.org/10.1023/A:1014444332118
    20. Wang, Z., Shirley, M. D., Meikle, S. T., Whitby, R. L., & Mikhalovsky, S. V. (2009). The surface acidity of acid oxidised multi-walled carbon nanotubes and the influence of in-situ generated fulvic acids on their stability in aqueous dispersions. Carbon, 47(1), 73-79. doi:10.1016/j.carbon.2008.09.038
    https://doi.org/10.1016/j.carbon.2008.09.038
    21. Goertzen, S. L., Thériault, K. D., Oickle, A. M., Tarasuk, A. C., & Andreas, H. A. (2010). Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination. Carbon, 48(4), 1252-1261. doi:10.1016/j. carbon.2009.11.050
    https://doi.org/10.1016/j.carbon.2009.11.050
    22. Oickle, A. M., Goertzen, S. L., Hopper, K. R., Abdalla, Y. O., & Andreas, H. A. (2010). Standardization of the Boehm titration: Part II. Method of agitation, effect of filtering and dilute titrant. Carbon, 48(12), 3313-3322. doi:10.1016/j.carbon.2010.05.004
    https://doi.org/10.1016/j.carbon.2010.05.004
    23. Schönherr, J., Buchheim, J. R., Scholz, P., & Adelhelm, P. (2018). Boehm Titration Revisited (Part I): Practical Aspects for Achieving a High Precision in Quantifying Oxygen-Containing Surface Groups on Carbon Materials. C(Journal of Carbon Research), 4(2), 21. 1-13. doi:10.3390/c4020021
    https://doi.org/10.3390/c4020021
    24. Schönherr, J., Buchheim, J., Scholz, P., & Adelhelm, P. (2018). Boehm Titration Revisited (Part II): A Comparison of Boehm Titration with Other Analytical Techniques on the Quantification of Oxygen-Containing Surface Groups for a Variety of Carbon Materials. C(Journal of Carbon Research), 4(2), 22. 1-16. doi:10.3390/c4020022
    https://doi.org/10.3390/c4020022
    25. Porshnev, S. V, & Belenkova, I V. (2005). Chislennyye metody na baze Mathcad. Sankt-Peterburg: BKHV-Peterburg