Thermodynamic properties of 3-(1,5-diphenylpyrrol-2-yl)- propanoic

2024;
: 8-14
1
National University Lviv Polytechnic
2
Ivan Franko National University of Lviv
3
Frantsevich Institute for Problems of Materials Science NASU
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University

Using precision equipment, the enthalpies of vaporization, fusion and formation in the condensed state of 3-(1,5-diphenylpyrrol-2-yl)-propanoic acid were experimentally determined. The enthalpy of sublimation at 298 K and the enthalpy of formation in the gaseous state were calculated. A comparative analysis of the experimentally determined values with theoretically calculated values using additive calculation methods is given.

1. Ribeiro da Silva, M. A., & Santos, A. F. (2010). Calorimetric and computational study of 2- and 3-acetyl-1-methylpyrrole isomers. The Journal of Physical Chemistry B, 114(8), 2846-2851. https://doi.org/10.1021/jp911323c
https://doi.org/10.1021/jp911323c
2. Santos, A. F., & Ribeiro da Silva, M. A. (2013). Molecular energetics of alkyl pyrrolecarboxylates: Calorimetric and computational study. The Journal of Physical Chemistry A, 117(24), 5195-5204. https://doi.org/10.1021/jp4032628
https://doi.org/10.1021/jp4032628
3. Santos, A. F., & Ribeiro da Silva, M. A. V. (2014). Experimental and high level ab initio enthalpies of formation of di- tri- tetra- and pentamethyl- substituted pyrroles. The Journal of Chemical Thermodynamics, 75, 1-7. https://doi.org/10.1016/j.jct.2014.04.003
https://doi.org/10.1016/j.jct.2014.04.003
4. Santos, A. F., & Ribeiro da Silva, M. A. V. (2010). A calorimetric and computational study of the thermochemistry of halogenated 1-phenylpyrrole derivatives. The Journal of Chemical Thermodynamics, 42(12), 1441-1450. https://doi.org/10.1016/j.jct.2010.06.012
https://doi.org/10.1016/j.jct.2010.06.012
5. Ivan, B.-C., Barbuceanu, S.-F., Hotnog, C. M., Anghel, A. I., Ancuceanu, R. V., Mihaila, M. A., Brasoveanu, L. I., Shova, S., Draghici, C., Olaru, O. T., Nitulescu, G. M., Dinu, M., & Dumitrascu, F. (2022). New pyrrole derivatives as promising biological agents: Design, synthesis, characterization, in silico, and cytotoxicity evaluation. International Journal of Molecular Sciences, 23(16), 8854. https://doi.org/10.3390/ijms23168854
https://doi.org/10.3390/ijms23168854
6. Forouzesh, A., Samadi Foroushani, S., Forouzesh, F., & Zand, E. (2019). Reliable target prediction of bioactive molecules based on chemical similarity without employing statistical methods. Frontiers in Pharmacology, 10. https://doi.org/10.3389/fphar.2019.00835
https://doi.org/10.3389/fphar.2019.00835
7. Klachko, O., Matiychuk, V., Sobechko, I., Serheyev, V., & Tishchenko, N. (2020). Thermodynamic properties of 6-methyl-2-oxo-4-aryl-1,2,3,4-tetrahydropyrimidine-5-carboxylic acid esters. Chemistry & Chemical Technology, 14(3), 277-283. https://doi.org/10.23939/chcht14.03.277
https://doi.org/10.23939/chcht14.03.277
8. Kostiuk, R. R., Horak, Y., Velychkivska, N., Sobechko, I. B., Pyshna, D. B., & Dibrivnyi, V. (2023). Thermodynamic properties of 2-methyl-5-phenylfuran-3-carboxylic. Chemistry, Technology and Application of Substances, 6(1), 8-14. https://doi.org/10.23939/ctas2023.01.008
https://doi.org/10.23939/ctas2023.01.008
9. Sobechko, B., Dibrivnyi, V. M., & Gorak, Yu. I. (2022). Enthalpy of formation and combustion of 5-(4-nitrophenyl)furan-2-carbaldehyde and its 2-methyl and 2-oxomethyl derivatives in the condensed state. Chemistry, Technology and Application of Substances, 5(2), 30-36. https://doi.org/10.23939/ctas2022.02.030
https://doi.org/10.23939/ctas2022.02.030
10.Rossini F. D. Experimental Thermochemistry. Interscience Publishers. N. Y.; London, 1956. Vol. 2. P. 326.
11. Nickel, J., Gohlke, B.-O., Erehman, J., Banerjee, P., Rong, W. W., Goede, A., Dunkel, M., & Preissner, R. (2014). SuperPred: Update on drug classification and target prediction. Nucleic Acids Research, 42(W1). https://doi.org/10.1093/nar/gku477
https://doi.org/10.1093/nar/gku477
12.Biological and bioorganic chemistry: textbook: in 2 books. Book 1. Bioorganic chemistry / B.S. Zimenkovskyi, V.A. Muzychenko, I.V. Nizhenkovska, G.O. Raw; under the editorship B.S. Zimenkovsky, I.V. Nizhenkovskaya. - 3rd edition. - K.: VSV "Medicine", 2022. - 272 p. [in Ukrainian]
13. http://www.codata.info/resources/databases/key1.html
14. Acree, W., & Chickos, J. S. (2016). Phase transition enthalpy measurements of organic and organometallic compounds. sublimation, vaporization and fusion enthalpies from 1880 to 2015. part 1. C1− C10. Journal of Physical and Chemical Reference Data, 45(3), 033101. https://doi.org/10.1063/1.4948363
https://doi.org/10.1063/1.4948363
15.Benson, S. W. (1965). III - bond energies. Journal of Chemical Education, 42(9), 502. https://doi.org/10.1021/ed042p502
https://doi.org/10.1021/ed042p502
16.Domalski, E. S., & Hearing, E. D. (1993). Estimation of the thermodynamic properties of C-H-N-O-S-halogen compounds at 298.15 K. Journal of Physical and Chemical Reference Data, 22(4), 805-1159. https://doi.org/10.1063/1.555927
https://doi.org/10.1063/1.555927
17.Cohen, N. (1996). Revised Group additivity values for enthalpies of formation (at 298 K) of carbon-hydrogen and carbon-hydrogen-oxygen compounds. Journal of Physical and Chemical Reference Data, 25(6), 1411-1481. https://doi.org/10.1063/1.555988
https://doi.org/10.1063/1.555988
18.Salmon, A., & Dalmazzone, D. (2007). Prediction of enthalpy of formation in the solid state (at 298.15K) using second-order group contributions-part 2: Carbon-hydrogen, carbon-hydrogen-oxygen, and carbon-hydrogen-nitrogen-oxygen compounds. Journal of Physical and Chemical Reference Data, 36(1), 19-58. https://doi.org/10.1063/1.2435401
https://doi.org/10.1063/1.2435401