Sodium chlorate is an important product for the Ukrainian and global economy. Based on the study of the stages of electrolysis of an aqueous solution of sodium chloride and the separation of chloride-chlorate solutions by evaporation-crystallization, a design of a periodical action installation for the production of crystalline sodium chlorate was developed. The research results showed that it is possible to avoid the stage of hot filtration of the suspension after evaporation and, in general, to simplify the technology and reduce its energy consumption. Design solutions are also aimed at using renewable energy sources for the processes.
1. Vogt, H., Balej, J., Bennett, J. E., Wintzer, P., Sheikh, S. A., & Gallone, P. (2000). Chlorine oxides and chlorine oxygen acids. Ullmann's Encyclopedia of Industrial Chemistry. https://doi.org/10.1002/14356007.a06_483.
https://doi.org/10.1002/14356007.a06_483
2. Girenko, D. D., Velichenko, A. B. & Shmychkova, O. B. (2021). Electrolysis of NaCl solutions in flow systems. Journal of Chemistry and Technologies, 29(1), 31-41. https://doi.org/10.15421/082111.
https://doi.org/10.15421/082111
3. Kristoffer Hedensted. (2017). Energy efficiency in the sodium chlorate process. From electrocatalysis to pilot plant investigations. Thesis for the degree of Doctor of Technology in natural science, with a focus on chemistry. Available online at: http://handle.net/2077/52081.
4. Endrődi, B., Sandin, S., Wildlock, M., Simic, N., & Cornell, A. (2019). Suppressed oxygen evolution during chlorate formation from hypochlorite in the presence of chromium(VI). Journal of Chemical Technology & Biotechnology, 94(5), 1520-1527. https://doi.org/10.1002/jctb.5911.
https://doi.org/10.1002/jctb.5911
5. Endrődi, B., Simic, N., Wildlock, M., & Cornell, A. (2017). A review of chromium(VI) use in chlorate electrolysis: Functions, challenges and suggested alternatives. Electrochimica Acta, 234, 108-122. https://doi.org/10.1016/j.electacta.2017.02.150.
https://doi.org/10.1016/j.electacta.2017.02.150
6. Wanngård, J., & Wildlock, M. (2017). The catalyzing effect of chromate in the chlorate formation reaction. Chemical Engineering Research and Design, 121, 438-447. https://doi.org/10.1016/j.cherd.2017.03.021.
https://doi.org/10.1016/j.cherd.2017.03.021
7. Szabó, M., Lihi, N., Simic, N., Fábián, I. (2021). Potential catalysts for the production of NaClO3 in the decomposition of HOCl, Chemical Engineering Research and Design, 169, 97-102. https://doi.org/10.1016/j.cherd.2021.03.010.
https://doi.org/10.1016/j.cherd.2021.03.010
8. Endrődi, B., Sandin, S., Smulders, V., Simic, N., Wildlock, M., Mul, G., Mei, B. T., & Cornell, A. (2018). Towards sustainable chlorate production: The effect of permanganate addition on current efficiency. Journal of Cleaner Production, 182, 529-537. https://doi.org/10.1016/j.jclepro.2018.02.071.
https://doi.org/10.1016/j.jclepro.2018.02.071
9. Endrődi, B., Stojanovic, A., Cuartero, M., Simic, N., Wildlock, M., de Marco, R., Crespo, G. A., & Cornell, A. (2019). Selective hydrogen evolution on manganese oxide coated electrodes: New cathodes for sodium chlorate production. ACS Sustainable Chemistry & Engineering, 7(14), 12170-12178. https://doi.org/10.1021/acssuschemeng.9b01279.
https://doi.org/10.1021/acssuschemeng.9b01279
10. Gebert, A., Lacroix, M., Savadogo, O., & Schulz, R. (2000). Cathodes for chlorate electrolysis with nanocrystalline Ti-Ru-Fe-O catalyst. Journal of Applied Electrochemistry, 30(9), 1061-1067. https://doi.org/10.1023/a:1004030706423.
https://doi.org/10.1023/A:1004030706423
11. Gajic-Krstajic, L., Elezovic, N., Jovic, B., Martelli, G., Jovic, V., & Krstajic, N. (2016). Fe-Mo alloy coatings as cathodes in chlorate production process. Chemical Industry, 70(1), 81-89. https://doi.org/10.2298/hemind150119014g.
https://doi.org/10.2298/HEMIND150119014G
12. Endrődi, B., Diaz-Morales, O., Mattinen, U., Cuartero, M., Padinjarethil, A. K., Simic, N., Wildlock, M., Crespo, G. A., & Cornell, A. (2020). Selective electrochemical hydrogen evolution on cerium oxide protected catalyst surfaces. Electrochimica Acta, 341, 136022. https://doi.org/10.1016/j.electacta.2020.136022.
https://doi.org/10.1016/j.electacta.2020.136022
13. Macounová, K. M., Simic, N., Ahlberg, E., & Krtil, P. (2018). Electrocatalytic aspects of the chlorate process: A Voltammetric and DEMS comparison of RuO2 and DSA anodes. Journal of The Electrochemical Society, 165(14). E751-E758. https://doi.org/10.1149/2.0241814jes.
https://doi.org/10.1149/2.0241814jes
14. Krstić, V., Pešovski. B. (2019) Reviews the research on some dimensionally stable anodes (DSA) based on titanium. Hydrometallurgy, 185, 71-75. https://doi.org/10.1016/j.hydromet.2019.01.018.
https://doi.org/10.1016/j.hydromet.2019.01.018