Еffect of downstream processing on content of glutathione and cell viability during production of inactive dry yeast

1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
West Pomeranian University of Technology in Szczecin, Poland

Glutathione (GSH) is a tripeptide thiol with important protective activity in living organisms. Due to its ability to prevent oxidation, this substance is commonly used in biotechnological products. The fed-batch process with yeasts of the genus Saccharomyces coupled with downstream processing to obtain inactive dry yeasts with high GSH content is the common method for industrial production. Short-term high-temperature treatment (1 minute at 105°C) emerged as potentially optimal, achieving CFU/g is less than 102  while maintaining relatively high GSH levels. Another approach showed the promise of adjusting pH changes to levels of 2.4-3.0 without altering inactivation conditions (95°C / 30 min) as an alternative to the previous one. Further studies are needed to explore the complex interplay between acidic conditions, duration of inactivation, and temperature parameters for simultaneously maximizing glutathione retention while controlling microbial viability.

  1. Bekatorou, A., Psarianos, C., & Koutinas, A. A. (2006). Production of food grade yeasts. Food Technology and Biotechnology, 44(3), 407-415. Retrieved from https://hrcak.srce.hr/file/162096
  2. Couto, N., Wood, J., & Barber, J. (2016). The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radical Biology and Medicine, 95, 27-42. doi: 10.1016/j.freeradbiomed.2016.02.028
  3. Espindola, A. S., Gomes, D. S., Panek, A. D., & Eleutherio, E. C. (2003). The role of glutathione in yeast dehydration tolerance. Cryobiology, 47(3), 236-241. doi: 10.1016/j.cryobiol.2003.10.003
  4. Huang, Z. R., Lin, Y. K., & Fang, J. Y. (2009). Biological and pharmacological activities of squalene and related compounds: Potential uses in cosmetic dermatology. Molecules, 14(1), 540-554. doi:10.3390/molecules14010540
  5. Kresnowati, M., Ikhsan, N. A., Nursa’adah, R. S., Santoso, N. N., & Susanto, Y. W. (2019). Evaluation of Glutathione Production Method using Saccharomyces cerevisiae. IOP Conference Series: Materials Science and Engineering, 543(1), 012004. doi:10.1088/1757-899X/543/1/012004
  6. Liang, G., Du, G., & Chen, J. (2008). Enhanced glutathione production by using low-pH stress coupled with cysteine addition in the treatment of high cell density culture of Candida utilis. Letters in applied microbiology, 46(5), 507–512. doi: 10.1111/j.1472-765X.2008.02352.x
  7. Li, Y., Wei, G., & Chen, J. (2004). Glutathione: a review on biotechnological production. Applied microbiology and biotechnology, 66(3), 233–242. doi:10.1007/s00253-004-1751-y
  8. Meister, A., & Anderson, M. E. (1983). Glutathione. Annual review of biochemistry, 52, 711–760. doi: 10.1146/annurev.bi.52.070183.003431
  9. Musatti, A., Manzoni, M., & Rollini, M. (2013). Post-fermentative production of glutathione by baker's yeast (S. cerevisiae) in compressed and dried forms. New biotechnology, 30(2), 219–226. doi: 10.1016/j.nbt.2012.05.024
  10. Nie, W., Wei, G., Du, G., Li, Y., & Chen, J. (2005). Enhanced intracellular glutathione synthesis and excretion capability of Candida utilis by using a low pH-stress strategy. Letters in applied microbiology, 40(5), 378–384. doi:10.1111/j.1472-765X.2005.01687.x
  11. Penninckx M. J. (2002). An overview on glutathione in Saccharomyces versus non-conventional yeasts. FEMS yeast research, 2(3), 295–305. doi: 10.1016/S1567-1356(02)00081-8
  12. Pócsi, I., Prade, R. A., & Penninckx, M. J. (2004). Glutathione, altruistic metabolite in fungi. Advances in microbial physiology, 49, 1–76. doi: 10.1016/S0065-2911(04)49001-8
  13. Reed D. J. (1990). Glutathione: toxicological implications. Annual review of pharmacology and toxicology, 30, 603–631. doi: 10.1146/annurev.pa.30.040190.003131
  14. Rollini, M., Musatti, A., & Manzoni, M. (2010). Production of glutathione in extracellular and intracellular forms by Saccharomyces cerevisiae. Process Biochemistry, 45(3), 441-445. doi:10.1016/j.procbio.2009.10.016
  15. Salbitani, G., Bottone, C., & Carfagna, S. (2017). Determination of reduced and total glutathione content in extremophilic microalga Galdieria phlegrea. Bio-protocol, 7(13), e2372. doi:10.21769/BioProtoc.2372
  16. Serra-Cardona, A., Canadell, D., & Ariño, J. (2015). Coordinate responses to alkaline pH stress in budding yeast. Microbial cell (Graz, Austria), 2(6), 182–196. doi:10.15698/mic2015.06.205
  17. Sugiyama, K., Kawamura, A., Izawa, S., & Inoue, Y. (2000). Role of glutathione in heat-shock-induced cell death of Saccharomyces cerevisiae. The Biochemical journal, 352 Pt 1(Pt 1), 71–78. doi: 10.1042/bj3520071
  18. Wei, G., Li, Y., Du, G., & Chen, J. (2003). Effect of surfactants on extracellular accumulation of glutathione by Saccharomyces cerevisiae. Process Biochemistry, 38, 1133-1138. doi:10.1016/S0032-9592(02)00249-2