It is shown that the ash content of coal is unevenly distributed by size classes. The 25-50 mm class has the highest average ash content (13.1% wt.), but exhibits significant variability (6.8-32.1% wt.). Smaller classes (<0.5 mm) have a higher ash content (up to 15.1% wt.) compared to the average sizes (10.9% wt. on average). The stability of the technological properties of the coal charge during injection was confirmed, however, there are discrepancies in particle size, volatile matter yield and ash content, which increased from the center of the tower to its outer rows. Additionally, segregation may cause problems with coke discharge. Uneven ash distribution within the coal blend results in the formation of coke zones with elevated mineral content, which deteriorates the mechanical strength of the coke (M10, M40) and adversely affects blast furnace operation, particularly in terms of slag formation and coke consumption.
1. Ni, C., Xu, G., Chang, J., Liu, B.(2023). Dense Medium Cyclone Separation of Fine Coal: A Discussion on the Separation Lower Limit. Minerals, 13(9), 1115. https://doi.org/10.3390/min13091115
2. Wang, X., Cheng, H., Ding, D. (2024). Advances and Prospects on Flotation Enhancement of Difficult-to-Float Coal by Emulsion: A Review. Minerals, 14 (9), 952. https://doi.org/10.3390/min14090952
3. Sánchez, F., Hartlieb, P. (2020). Innovation in the Mining Industry: Technological Trends and a Case Study of the Challenges of Disruptive Innovation. Mining, Metallurgy & Exploration, 37, 1385–1399. https://doi.org/10.1007/s42461-020-00262-1
4. Zhao, Y., Yang, X., Luo, Z. et al. (2014). Progress in developments of dry coal beneficiation. International Journal of Coal Science & Technology, 1, 103–112. https://doi.org/10.1007/s40789-014-0014-5
5. Silva, G. L. R., Destro, E., Bueno, R. F., Oliveira, J. L. de R., Assis, R.D. (2009). Caracterização química, física e metalúrgica das frações granulométricas da mistura de carvão da gerdau açominas, Seminário de Redução de Minério de Ferro e Matérias-primas e 10º Simpósio Brasileiro de Minério de Ferro, Ouro Preto: 2009. ISSN: 2594-357X , DOI 10.5151/2594-357X-15521
6. Braga, E.M.H., da Silva, G.L.R., Amaral, R.C.V., Carias, M. do C., Assis, P. S., Lemos L. R. (2020). Influence of moisture and particle size on coal blend bulk density. International Journal of Engineering, 72 (2). https://doi.org/10.1590/0370-44672018720006
7. Constant, M., Coppin, N., Dubois, F., Artoni, R., Lambrechts, J., Legat, V. (2021). Numerical investigation of the density sorting of grains using water jigging. Powder Technology, 393, 705–721. https://doi.org/10.1016/j.powtec.2021.07.036
8. Bosman, J. The art and science of dense medium selection. (2014). Journal of the Southern African Institute of Mining and Metallurgy, 114, 529–536. https://www.saimm.co.za/Journal/v114n07p529.pdf
9. Mianowski, A., Mertas, B., Ściążko, M. (2021). The Concept of Optimal Compaction of the Charge in the Gravitation System Using the Grains Triangle for Cokemaking Process. Energies , 14(13), 3911. https://doi.org/10.3390/en14133911
10. Zhu, H.P., Zhou, Z.Y., Yang, R.Y., Yu, A.B. (2007). Chemical Engineering Science, 62 (13), 3378-3396. https://doi.org/10.1016/j.ces.2006.12.089
11. Li, H., He, Y., Yang, J., Zhu, X., Peng, Zh., Yu. J. (2018). Segregation of coal particles in air classifier: Effect of particle size and density. Energy Sources, Part A: Recovery, Utilization, and Environmental. Effects, 40, 11, 1332-1341. https://doi.org/10.1080/15567036.2018.1475521
12. Li, X., Zhang, M., Zan, X., Tan, B., Gao, S. (2023). Numerical-simulation study on the influence of wind speed and segregation effect on spontaneous combustion of coal bunker. Case Studies in Thermal Engineering, 52(1):103678. https://doi.org/10.1016/j.csite.2023.103678
13. Fu, Zh., Zhu, J., Barghi, Sh., Zhao, Yu., Luo, Zh., Duan, Ch. (2020). Mixing and segregation behavior in an air dense medium fluidized bed with binary mixtures for dry coal beneficiation. Powder Technology, 371, 30, 161-169. https://doi.org/10.1016/j.powtec.2020.05.094
14. Wang, S., Fu, Y., Zhao, Y., Dong, L. Chen. Z. (2022). Effect of bed density on the segregation behavior of fine coal particles (<6 mm) in a gas–solid separation fluidized bed. Powder Technology, 395, 872-882. https://doi.org/10.1016/j.powtec.2021.10.037
15. Gupta, S., De, S. (2021). Investigation of hydrodynamics and segregation characteristics in a dual fluidized bed using the binary mixture of sand and high-ash coal. Advanced Powder Technology, 32 (8), 2690-2702. https://doi.org/10.1016/j.apt.2021.04.023
16. Sun, Z., Huang, L., Jia, R. (2021). Coal and Gangue Separating Robot System Based on Computer Vision. Sensors, 21(4), 1349. https://doi.org/10.3390/s21041349
17. Wang, Q., Yin, W., Zhao, B., Yang, H., Lu, J., Wei., L. (2014). The segregation behaviors of fine coal particles in a coal beneficiation fluidized bed. Fuel Processing Technology, 124, 28-34. https://doi.org/10.1016/j.fuproc.2014.02.015
18. Ma, Y. Liu, J., Jiang, Y. Jiang, X., Ma, J., Wang, X., Jiao, A. (2019). Segregation patterns and characteristics differences of superfine pulverized coal ground by three pulverizing systems. Advanced Powder Technology, 30 (3), 513-523. https://doi.org/10.1016/j.apt.2018.12.002
19. Oshitani, J., Teramoto, K., Yoshida, M., Kubo, Y., Nakatsukasa, Sh., Franks, G.V. (2016). Dry beneficiation of fine coal using density-segregation in a gas–solid fluidized bed. Advanced Powder Technology, 27 (4), 1689-1693. https://doi.org/10.1016/j.apt.2016.05.032
20. Yang, F., Zhang, M., Ren, G., Yao, S., Zhou, E. (2023). Study on the Separation Effect and Mechanism of 6–0.5 mm Coal in Fluidized Bed with Vibratory Combined Force Field. Energies, 16 (3), 1133. https://doi.org/10.3390/en16031133
21. Surowiak, A., Niedoba, T., Wahman, M., Hassanzadeh, A. (2023). Optimization of Coal Production Based on the Modeling of the Jig Operation. Energies, 16 (4), 1939. https://doi.org/10.3390/en16041939
22. Burat F., Kuyumcu H.Z., Sander S.(2015). Effect of Particle-Size Distribution and Degree of Saturation on Coal-Compacting Processes within a Coke-Making Operation, International Journal of Coal Preparation and Utilization , 35(4), 216-231. https://doi.org/10.1080/19392699.2015.1024832
23. Dohi Y., Hanaoka K., Yamamoto T., Yokoyama M., Fukada K., Matsui T.(2014). Effect of Coal Size Segregation in Coal Bin on Discharging Coke Cake, ISIJ International, 54 (6), 1228-1234. https://doi.org/10.2355/isijinternational.54.1228