Phosphorus-containing polyesters can be used in the biomedical field, as they have a wide range of properties. The presence of a phosphate group in the structure of the polyester macrochain makes them suitable for ionic binding of organic substances that exhibit basic properties. A method for hydrolysis of the ethyl phosphate group of polyester had been developed, the isolation of ethanol as a by-product of the reaction had been confirmed by gas chromatography, and optimal conditions for hydrolysis of the polyester side chain had been established, while preserving the main chain of the phosphorus-containing polyester.
1. Teasdale, I. (2018). Stimuli-responsive phosphorus-based polymers. European Journal of Inorganic Chemistry, 2019(11–12), 1445–1456. https://doi.org/ 10.1002/ejic.201801077.
2. Strasser, P., & Teasdale, I. (2020). Main-chain phosphorus-containing polymers for therapeutic applications. Molecules, 25(7), 1716. https://doi.org/10.3390/molecules 25071716.
3. Hong, Y.-L., Liu, Y., Wang, C., Fang, X.-Q., Yang, F., Tan, Z.-W., & Liu, C.-M. (2023). Progress in the preparation of phosphorus-containing polymers via phosphorus trichloride-free routes. European Polymer Journal, 195, 112242. https://doi.org/10.1016/j.eurpolymj.2023.112242.
4. Wehbi, M., Mehdi, A., Negrell, C., David, G., Alaaeddine, A., & Améduri, B. (2019). Phosphorus-containing fluoropolymers: State of the art and applications. ACS Applied Materials & Interfaces, 12(1), 38–59. https://doi.org/10.1021/acsami.9b16228.
5. Singh, I., & Sivaramakrishna, A (2024). Phosphorus-based polymeric flame retardants – recent advances and perspectives. ChemistrySelect, 9(26). https://doi.org/10.1002/slct.202401485.
6. Puziy, A. M., Poddubnaya, O. I., Gawdzik, B., & Tascón, J. M. D. (2020). Phosphorus-containing carbons: Preparation, properties and utilization. Carbon, 157, 796–846. https://doi.org/10.1016/j.carbon.2019.10.018.
7. Telegdi, J. (2022). History of phosphorus- containing corrosion inhibitors: From the beginning till the present time. Water-Formed Deposits, 49–68. https://doi.org/10.1016/b978-0-12-822896-8.00004-2.
8. Giusti, L., Landaeta, V. R., Vanni, M., Kelly, J. A., Wolf, R., & Caporali, M. (2021). Coordination Chemistry of Elemental Phosphorus. Coordination Chemistry Reviews, 441, 213927. https://doi.org/10.1016/ j.ccr.2021.213927.
9. Cui, J., Zhang, Y., Wang, L., Liu, H., Wang, N., Yang, B., Guo, J., & Tian, L. (2019). Phosphorus-containing salen-ni metal complexes enhancing the flame retardancy and smoke suppression of epoxy resin composites. Journal of Applied Polymer Science, 137(21). https://doi.org/10.1002/app.48734.
10. Liu, Y., & Zhang, P. (2022). Review of phosphorus-based polymers for mineral scale and corrosion control in oilfield. Polymers, 14(13), 2673. https://doi.org/10.3390/polym14132673.
11. Matczak-Jon, E., & Videnova-Adrabińska, V. (2005). Supramolecular chemistry and complexation abilities of diphosphonic acids. Coordination Chemistry Reviews, 249(21–22), 2458–2488. https://doi.org/10.1016/ j.ccr.2005.06.001.
12. Jiang, Y., Yan, P., Wang, Y., Zhou, C., & Lei, J. (2018). Form-stable phase change materials with enhanced thermal stability and fire resistance via the incorporation of phosphorus and Silicon. Materials & Design, 160, 763–771. https://doi.org/10.1016/j.matdes.2018.10.020.
13. Zhang, C., Jiang, Y., Li, S., Huang, Z., Zhan, X.- Q., Ma, N., & Tsai, F.-C. (2022). Recent trends of phosphorus- containing flame retardants modified polypropylene composites processing. Heliyon, 8(11). https://doi.org/10.1016/j.heliyon.2022.e11225.
14. Wu, J., Xu, R., Shao, M., Zhao, L., Xu, W., & Guo, Y. (2024). Phosphorus-based nanomaterials for biomedical applications: A Review. ACS Applied Nano Materials, 7(10), 11022–11036. https://doi.org/10.1021/ acsanm.4c00015.
15. Varvarenko, S., Tarnavchyk, I., Voronov, A., Fihurka, N., Dron, I., Nosova, N., ... Voronov, S. (2013). Synthesis and colloidal properties of polyesters based on glutamic acids and glycols of different nature. Chemistry and Chemical Technology, 7(2), 161-168. https://doi.org/10.23939/chcht07.02.161.
16. Gohil, S. V., Suhail, S., Rose, J., Vella, T., & Nair, L. S. (2017). Polymers and composites for orthopedic applications. In Materials for Bone Disorders (pp. 349-403). Academic Press. https://doi.org/10.1016/B978-0-12-802792- 9.00008-2.
17. Karahan, M. (Ed.). (2021). Synthetic Peptide Vaccine Models: Design, Synthesis, Purification and Characterization. CRC Press.
18. Varvarenko, S. M., Nosova, N. H., Dron, I. A., Voronov, A. S., Fihurka, N. V., Tarnavchyk, I. T., ... & Voronov, S. A. (2013). Novi amfifilni aminofunktsiini poliestery ta dyspersni systemy na yikh osnovi. Voprosу khymyy y khymycheskoi tekhnolohyy, (5), 27-32.
19. Stasiuk, A. V., Prychak, S. P., Fihurka, N. V., Varvarenko, S. M., Samaryk, V. Ia. (2021). Syntez fosforovmisnykh psevdopoliaminokyslot poliesternoho typu. Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 4(1), 224–229. https://doi.org/10.23939/ctas2021.01.224.
20. NMR spectroscopy: Chemical Shift Overview. (2024). MyJoVE Corporation.
21. Stasiuk, A. V., Fihurka, N. V., Tarnavchyk, I. T., Nosova, N. G., Pasetto, P., Varvarenko, S. M., & Samaryk, V. Y. (2022). Influence of structure and nature of pseudo- poly(amino acid)s on size and morphology of their particle in self-stabilized aqueous dispersions. Applied Nanoscience. https://doi.org/10.1007/s13204-022-02664-7.
22. Stasiuk, A., Fihurka, N., Vlizlo, V., Prychak, S., Ostapiv, D., Varvarenko, S., & Samaryk, V. (2022). Synthesis and properties of phosphorus-containing pseudo-poly(amino acid)sof polyester type based on n-derivatives of glutaminic acid. Chemistry&Chemical Technology, 16(1), 51–58.
23. Bauer, K. N., Tee, H. T., Velencoso, M. M., & Wurm, F. R. (2017). Main-chain poly (phosphoester) s: History, syntheses, degradation, bio-and flame-retardant applications. Progress in Polymer Science, 73, 61-122. https://doi.org/10.1016/j.progpolymsci.2017.05.004.