Cellulase is an important hydrolytic enzyme widely used in different industries, highlighting the potential for the search, identification, and study of new microorganism producers of this enzyme. In the present study, filamentous fungi Trichoderma sp. were isolated from anabiotic conditions and demonstrated significant potential in cellulose hydrolysis. The study of cellulolytic activity was carried out using a selective- differential medium with Congo dye and various cellulose sources. Quantitative determination of cellulase content synthesized by Trichoderma sp. was performed by DNS assay (using dinitrosalicylic acid). The obtained results indicate the prospect for using this strain in studies of the enzymatic processing of plant cellulose raw material.
1. Wilson, D. (2009). Cellulases. In Elsevier eBooks (pp. 252–258). DOI: 10.1016/b978-012373944-5.00138-3
2. Ilić N., Milić M., Beluhan S., Dimitrijević-Branković S. (2023). Cellulases: From lignocellulosic biomass to improved production. Energies, 16(8), 3598. DOI: 10.3390/en16083598.
3. Zhang Y., Tang B., Du G. (2017). Self-induction system for cellulase production by cellobiose produced from glucose in Rhizopus stolonifer. Scientific Reports, 7(1). DOI: 10.1038/s41598-017-10964-0
4. Paloheimo M., Haarmann T., Mäkinen S., Vehmaanperä J. (2016). Production of Industrial Enzymes in Trichoderma reesei. In Fungal biology (pp. 23–57). DOI: 10.1007/978-3-319-27951-0_2
5. Oesterling J. (2019). Grass Notice (GRN): Cellulase enzyme preparation produced by Trichoderma reesei (No. 891). Retrived from https://www.fda.gov/media/153008/download
6. Grzyb T., Skłodowska A. (2022). Introduction to Bacterial Anhydrobiosis: a General perspective and the Mechanisms of Desiccation-Associated Damage. Microorganisms, 10(2), 432. DOI: 10.3390/microorganisms10020432
7. Ranjan R., Rai R., Bhatt S. B., Dhar P. (2023). Technological road map of Cellulase: A comprehensive outlook to structural, computational, and industrial applications. Biochemical Engineering Journal, 198, 109020. DOI: 10.1016/j.bej.2023.109020
8. Bischof R. H., Ramoni J., Seiboth B. (2016). Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microbial Cell Factories, 15(1). DOI: 10.1186/s12934-016-0507-6
9. Han X., Feng H., Tian W., Zhang K., Zhang L., Wang J., Jiang S. (2024). A sandwich structural filter Paper–AGNWS/MXENE composite for superior electromagnetic interference shielding. Polymers, 16(6), 760. DOI: 10.3390/polym16060760
10. Qoybr. (2023). The composition and application of filter paper. Hawach Scientific Co., Ltd. Retrived from https://www.hawachfilterpaper.com/the-composition-and-application-of-fil...
11. Nguyen Q. D., Lam D. T., Nguyen V. H., Dinh Y. N., Le H. P. (2022). Study on the Production of Cellulase by Using Aspergillus Oryzae and its Application on the Green Coffee Treatment. Technical Education Science, 73, 11–19. DOI: 10.54644/jte.73.2022.1173
12. Tkalenko H., Gadzalo Y., Borzykh O., Horal, S. (2021). In vitro screening of new strains of predacious nematophagous fungi for biocontrol suitability when produced in liquid culture. Agricultural Science and Practice, 8(2), 3–15. DOI: 10.15407/agrisp8.02.003
13. Sun J., Yang H., Ge-Zhang S., Chi Y., Qi D. (2024). Identification of a Fomitopsis pinicola from Xiaoxing’an Mountains and Optimization of Cellulase Activity. Forests, 15(9), 1673. DOI: 10.3390/f15091673
14. Vázquez-Montoya E. L., Castro-Ochoa L. D., Maldonado-Mendoza I. E., Luna-Suárez S., Castro-Martínez, C. (2019). Moringa straw as cellulase production inducer and cellulolytic fungi source. Revista Argentina De Microbiología, 52(1), 4–12. DOI: 10.1016/j.ram.2019.02.005
15. Civzele A., Mezule L. (2024). Isolation and screening of wood-decaying fungi for lignocellulolytic enzyme production and bioremediation processes. Frontiers in Fungal Biology, 5. DOI: 10.3389/ffunb.2024.1494182
16. Tõlgo M., Hüttner S., Rugbjerg P., Thuy N. T., Thanh V. N., Larsbrink J., Olsson L. (2021). Genomic and transcriptomic analysis of the thermophilic lignocellulose-degrading fungus Thielavia terrestris LPH172. Biotechnology for Biofuels, 14(1). DOI: 10.1186/s13068-021-01975-1
17. Liu L., Huang W., Liu Y., Li M. (2021). Diversity of cellulolytic microorganisms and microbial cellulases. International Biodeterioration & Biodegradation, 163, 105277. DOI: 10.1016/j.ibiod.2021.105277
18. Bhati N., Shreya N., Sharma A. K. (2022). Production and optimisation of cellulase enzyme by Aspergillus uvarum CBS 121591 isolated from soil. Vegetos, 36(1), 201–209. DOI: 10.1007/s42535-022-00450-y
19. Szydlowski L., Boschetti C., Crisp A., Barbosa E., Tunnacliffe A. (2015). Multiple horizontally acquired genes from fungal and prokaryotic donors encode cellulolytic enzymes in the bdelloid rotifer Adineta ricciae. Gene, 566(2), 125–137. DOI: 10.1016/j.gene.2015.04.007
20. Bhardwaj N., Kumar B., Agrawal K., Verma P. (2021). Current perspective on production and applications of microbial cellulases: a review. Bioresources and Bioprocessing, 8(1). DOI: 10.1186/s40643-021-00447-6
21. Khlibyshyn Y. Y., Pochapska I. Y. (2021). Study of cultivation of yeast saccharomyces cerevisiae in different mediums. Chemistry Technology and Application of Substances, 4(2), 122–126. DOI: 10.23939/ctas2021.02.122
22. Bukhalo A., Dugan O., Maksymyuk M., Linovitska V. (2012). Enzymatic activity of the higher basidial fungus Grifola frondosa. Proceedings of National Aviation University, 47(2), 155–161. DOI: 10.18372/2306-1472.47.29 [in Ukrainian]
23. Khanik Y. O., Zvir G. I., Grynchyshyn N. M. (2023). Influence of firefighting fluorosynthetic film forming foam on soil microbocenosis. Ecology and Noospherology, 34(2), 61–69. DOI: 10.15421/032310
24. Azuddin N. F., Azmy M. S. M. N., Zakaria L. (2023). Molecular identification of endophytic fungi in lawn grass (Axonopus compressus) and their pathogenic ability. Scientific Reports, 13(1). DOI: 10.1038/s41598-023-31291-7
25. Sahu T., Choudhary R., Kulkarni, P. (2025). Optimization of Cellulase Production by Enterobacter quasihormaechei Using Pressmud Waste as Substrate. Ecology Environment and Conservation, 31(Suppl), S423–S429. DOI: 10.53550/eec.2025.v31i02s.073
26. Acharya T., Hare J. (2022). Sabouraud Agar and other fungal growth media. In Fungal biology (pp. 69–86). DOI: 10.1007/978-3-030-83749-5_2
27. Sharma A., Sagar A., Rana J., Rani R. (2022). Green synthesis of silver nanoparticles and its antibacterial activity using fungus Talaromyces purpureogenus isolated from Taxus baccata Linn. Micro and Nano Systems Letters, 10(1). DOI: 10.1186/s40486-022-00144-9
28. Ahmed A., Bibi A. (2018). Fungal cellulase; production and applications: minireview. LIFE International Journal of Health and Life-Sciences, 4(1), 19–36. DOI: 10.20319/lijhls.2018.41.1936
29. Thermo Scientific Czapek Medium - Microbiological media and media additives, Prepared Microbiology Media. Retrived from https://www.fishersci.com/shop/products/remel-czapek-medium/p-4523197
30. Kunasundari, B., Naresh, S., & Zakaria, N. Z. C. (2017). Isolation and characterization of cellulase producing bacteria from tropical mangrove soil. UGC Care Group1 Journal, 52(1). DOI: 10.1145/3143344.3143357
31. Uzuniva-Doneva T., Donev T. Anabiosis and conservation of microorganisms. (2005). Journal of Culture Collections, 4(1), 17–28.
32. Wort Broth suitable for microbiology, NutriSelect Basic | Sigma-Aldrich. Retrived from https://www.sigmaaldrich.com/UA/en/product/sial/53493?srsltid=AfmBOoomTO...
33. Batubara U. M., Mardalisa M., Suparjo S., Maritsa H. U., Pujianto E., Herlini M. (2021). Isolation and characterization of cellulolytic bacteria diversity in Peatland ecosystem and their cellulolytic activities. IOP Conference Series Earth and Environmental Science, 934(1), 012028. DOI: 10.1088/1755-1315/934/1/012028
34. Cortesão M., Siems K., Koch S., Beblo-Vranesevic K., Rabbow E., Berger T., Lane M., James L., Johnson P., Waters S. M., Verma S. D., Smith D. J., Moeller R. (2021). MARSBOX: Fungal and bacterial endurance from a Balloon-Flown Analog mission in the stratosphere. Frontiers in Microbiology, 12. DOI: 10.3389/fmicb.2021.601713
35. Kieliszek M., Sęk W., Khroustalyova G., Rapoport A., Kieliszek M. (2024). Anhydrobiosis in yeast: Effect of selenium on the resistance of yeast cells in the dehydration-rehydration process. Journal of Elementology, 1/2025. DOI: 10.5601/jelem.2024.29.3.3381
36. Ruiz-Caldas M., Carlsson J., Sadiktsis I., Jaworski A., Nilsson U., Mathew A. P. (2022). Cellulose Nanocrystals from Postconsumer Cotton and Blended Fabrics: A Study on Their Properties, Chemical Composition, and Process Efficiency. ACS Sustainable Chemistry & Engineering, 10(11), 3787–3798. DOI: 10.1021/acssuschemeng.2c00797
37. Saldaña-Mendoza S. A., Ascacio-Valdés J. A., Palacios-Ponce A. S., Contreras-Esquivel J. C., Rodríguez-Herrera R., Ruiz H. A., Martínez-Hernandez J. L., Sugathan S., Aguilar C. N. (2020). Use of wastes from the tea and coffee industries for the production of cellulases using fungi isolated from the Western Ghats of India. Systems Microbiology and Biomanufacturing, 1(1), 33–41. DOI: 10.1007/s43393-020-00001-z
38. Kumari A. V. a. G., Sunilson J. a. J., Prema M., Vinayagamurthi M. R. (2021). Isolation and screening of cellulolytic fungi from mangrove ecosystem. AIP Conference Proceedings, 2378, 020023. DOI: 10.1063/5.0058314