The growing demand for environmentally sustainable materials with improved performance has led to a notable rise in the production of thermally modified (TM) wood, including ash wood (Fraxinus excelsior L.). Although TM wood offers enhanced functional properties and durability, it still has a finite service life. Comprehensive experimental investigations have revealed that prolonged environmental exposure (over 24 months) significantly affects the surface quality of thermally modified ash (TM-Ash) wood. Scanning electron microscopy (SEM) identified surface degradation, while water contact angle measurements of indicated a shift from hydrophobic to hydrophilic behavior and accelerated water permeability. As one of the strategies for recycling TM wood at the end of its service life, the potential use of this material as a raw feedstock for solid biofuel production has been explored. The comprehensive thermal analysis of biomass sample (Biom-TM-Ash24) obtained by grinding TM-Ash wood, exposed outdoors for 24 months, revealed its characteristic mass loss behavior across different temperature intervals. The intensive decomposition of hemicellulose, cellulose, and the less stable lignin components, occurring between 200 and 398 °C, was accompanied by the most substantial mass loss (62.9%) and was expressed by a broad extremum on the DTA curve due to the pronounced exothermic reactions, indicating a high calorific value of the biomass. The high calorific value of the biomass (19.7 MJ/kg), which exceeds that of unmodified ash wood biomass (18.8 MJ/kg), along with favorable ash content (0.5–7 wt.% d.m.) and an optimal moisture level (6.8 ± 0.5%), indicates its potential for use as feedstock in solid biofuel production.
1. Bahrami, A., Hornborg, A., Persson, S., Norén, J., & Asplin, B. B. (2023). Evaluation of Untreated and Surface-Treated Wooden Facades of Buildings in Sweden. Coatings, 13, 746. doi: https://doi.org/10.3390/coatings13040746
2. Besserer, A., Troilo, S., Girods, P., Rogaume, Y., & Brosse, N. (2021). Cascading recycling of wood waste: A review. Polymers, 13(11), 1752. doi: https://doi.org/10.3390/polym13111752
3. Denysiuk, A., Atamanyuk V., Hnativ, Z., Boldyryev, S. (2025). Hydrodynamics of filtration drying of wild carrot pomace. Journal of Environmental Problems, 10(1), 79-87. doi: https://doi.org/10.23939/ep2025.01.079
4. Esteves, B., Sen, U., & Pereira, H. (2023). Influence of Chemical Composition on Heating Value of Biomass: A Review and Bibliometric Analysis. Energies, 16, 4226. doi: https://doi.org/10.3390/en16104226
5. Faraca, G., Boldrin, A., & Astrup, T. (2019). Resource quality of wood waste: The importance of physical and chemical impurities in wood waste for recycling. Waste Management, 87, 135-147. doi: https://doi.org/10.1016/j.wasman.2019.02.005
6. Gayda, S. V., & Kiyko, O. A. (2020). The investigation of properties of blockboards made of post-consumer wood. Poznan. Drewno. Prace naukowe. Doniesienia. Komunikaty, 63(206), 77-102. doi: https://doi.org/10.12841/wood.1644-3985.352.10
7. Gayda, S. V., & Kiyko, O. A. (2023). Study of Physical and Mechanical Properties of Post-Consumer Wood of Different Age. Drewno. Prace naukowe. Doniesienia. Komunikaty, 66(212), 00010. doi: https://doi.org/10.53502/wood-177453
8. Grigoriadis, K., Whittaker, M., Soutsos, M., Sha, W., Napolano, L., Klinge, A., & Largo, A. (2019). Improving the recycling rate of the construction industry. Fifth International Conference on Sustainable Construction Materials and Technologies, 1, July 2019, h Retrieved from ttps://pure.qub.ac.uk/en/publications/improving-the-recycling-rate-of-theconstruction-industry
9. Herrera-Díaz, R., Sepúlveda-Villarroel, V., Torres-Mella, J., Salvo-Sepúlveda, L., Llano-Ponte, R., Salinas-Lira, C., Peredo, M. A., & Ananías, R. A. (2019). Influence of the wood quality and treatment temperature on the physical and mechanical properties of thermally modified radiata pine. European Journal of Wood and Wood Products, 77, 661–671. doi: https://doi. org/10.1007/s00107-019-01424-9
10. Hosovkyi, R., Kindzera, D., & Atamanyuk, V. (2016). Diffusive mass transfer during drying of grinded sunflower stalks. Chemistry & Chemical Technology, 10(4), 459-463. doi: https://doi.org/10.23939/chcht10.04.45
11. Hou, J., Jin, Y., Che, W., & Yu Y. (2022). Value-added utilization of wood processing residues into cement-bonded particleboards with admirable integrated performance. Construction and Building Materials, 344, 128144. doi: https://doi.org/10.1016/j.conbuildmat.2022.128144
12. Humar, M., Lesar, B., & Kržišnik, D. (2020). Moisture Performance of Façade Elements Made of Thermally Modified Norway Spruce Wood. Forests, 11, 348. doi: https://doi.org/10.3390/f11030348
13. Ince, C.,Tayançlı, S., & Derogar, S. (2021). Recycling waste wood in cement mortars towards the regeneration of sustainable environment. Construction and Building Materials, 299, 123891. doi: https://doi.org/10.1016/j.conbuildmat.2021.123891
I4. ždinský, J., Vidholdová, Z., Reinprecht, L. (2020). Particleboards from Recycled Wood. Forests, 11, 1166. doi: https://doi.org/10.3390/f11111166
15. Jones, D., & Sandberg, D. (2020). A Review of Wood Modification Globally – Updated Findings from COST FP1407. Interdisciplinary Perspectives on the Built Environment, 1, 1–31. doi: https://doi.org/10.37947/IPBE.2020.VOL1.1
16. Kindzera, D., Hosovskyi, R., Atamanyuk, V., & Simak, D. (2021). Heat transfer process during drying of grinded biomass in a fixed bed dryer. Chemistry & Chemical Technology, 15(1), 118–124. doi: https://doi.org/10.23939/chcht15.01.118
17. Kindzera, D., & Kochubei, V. (2025). Comparison of the energy properties of sunflower stalk fibers for solid biofuel production. Journal of Chemistry, 2025, 7990012. doi: https://doi.org/10.1155/joch/7990012
18. Medvid, L. (2021). Post-consumer wood – an additional reserve of raw materials for construction materials. Forestry, Forest, Paper and Woodworking Industry, 47, 34-46. doi: https://doi.org/10.36930/42214706
19. Meger, J., Kozioł, C., Pałucka, M., Burczyk, Ja., & Chybicki, I. (2024). Genetic resources of common ash (Fraxinus excelsior L.) in Poland. BMC Plant Biology, 24, 186. doi: https://doi.org/10.1186/s12870-024-04886-z
20. Navare, K., Arts, W., Faraca, G., Van den Bossche, G., Sels, B. & Van Acker, K. (2022). Environmental impact assessment of cascading use of wood in bio-fuels and biochemicals. Resources, Conservation and Recycling, 186, 106588. doi: https://doi.org/10.1016/j.resconrec.2022.106588
21. Pazzaglia, A., & Castellani, B. (2023). A Decision Tool for the Valorization of Wood Waste. Environmental and Climate Technologies, 27(1), 824-835. doi: https://doi.org/10.2478/rtuect-2023-0060
22. Pizzeghello, D., Bellin, L., Nardi, S., Francioso, O., Squartini, A., & Concheri, G. (2021). Wood-Based Compost Affects Soil Fertility and the Content of Available Forms of Nutrients in Vineyard and Field-Scale Agroecosystems. Agronomy, 11, 518. doi: https://doi.org/10.3390/agronomy11030518
23. Schroeter-Zakrzewska, A., & Komorowicz, M. (2022). The Use of Compost from Post-Consumer Wood Waste Containing Microbiological Inoculums on Growth and Flowering of Chrysanthemum (Chrysanthemum × grandiflorum Ramat./Kitam.). Agronomy, 12, 1274. https://doi.org/10.3390/agronomy12061274
24. Todaro, L., Rita, A., Cetera, P., & D'Auria, M. (2015). Thermal treatment modifies the calorific value and ash content in some wood species. Fuel, 140, 1–3. doi: https://doi.org/10.1016/j.fuel.2014.09.060
25. Tomak, E. D., Ustaomer, D., Ermeydan, M. A., & Yildiz, S. (2018). An investigation of surface properties of thermally modified wood during natural weathering for 48 months. Measurement, 127, 187–197. doi: https://doi.org/10.1016/j.measurement.2018.05.102
26. Tsapko, Yu. V., Horbachova, O. Yu., Mazurchuk, S. M., & Bondarenko O. P. (2021). Determining of the effectiveness of thermally modified hornbeam wood ultraviolet protection. Scientific Bulletin of UNFU, 31(2), 81–87. doi: https://doi.org/10.36930/40310213
27. Wróblewska, H., Czekała, J., & Piotrowska, M. (2009). Impact of different wood wastes on chemical properties of manufacutered composts. Journal of Research and Applications in Agricultural Engineering, 54, 185–189.
28. Zelinka, S. L., Altgen, M., Emmerich, L., Guigo, N., Keplinger, T., Kymäläinen, M., & Thybring, E. E. (2022). Review of wood modification and wood functionalization technologies. Forests, 13(7), 1004. doi: https://doi.org/10.3390/f13071004
29. Zevenhoven, M., Yrjas, P., Skrifvars, B-J., & Hupa, M. (2012). Characterization of ash-forming matter in various solid fuels by selective leaching and its implications for fluidized-bed combustion,” Energy Fuels, 26, 6366−6386. doi: https://doi.org/10.1021/ef300621j