An analysis was performed on the potential integrated use of alternative energy sources for producing fuel briquettes. This includes pyrocarbon generated through low-temperature pyrolysis of industrial and household plastic waste, as well as waste from the woodworking, pulp and paper, and agricultural industries. The process of forming fuel briquettes by cold pressing a mixture consisting of 60–70 wt.% pyrocarbon and 30–40 wt.% biomass (sawdust, corrugated cardboard, buckwheat, sunflower, wheat) was investigated. The effect of corn starch on the mechanical strength of the fuel briquettes was determined, which is attributed to the formation of inter- and macromolecular hydrogen bonds between the biomass and pyrocarbon components. It was found that the heat of combustion of the developed fuel briquettes is within the range of 4800–5100 Kcal/kg. Based on the results obtained, the effective use of these fuel briquettes in autonomous heating boilers for industrial, administrative, and residential buildings is proposed.
1. Balalaiev, O. (2012). Different interpretations FTIR diffuse reflections of coals in is minimum broker condition. Zbirnyk naukovykh prats «Heotekhnichni mekhanika», 98, 77-84.
2. Burova, A., & Vorobiov, L. Y. (2016). Kalorymetrychnyi analiz tverdoho ta ridkoho biopalyva, Scientific works of Sworld, 1(42), 2, 38-42.
3. Burova, A., Vorobiov, L. Y., & Serhiienko, R. V., (2016). Kalorymetrychnyi analiz yakosti palyvnykh bryketiv ta pelet. Naukovyy pohlyad v maybutnye, 2(4), 78-81. doi: https://doi.org/10.21893/2415-7538-2016-04-2-193
4. Brykety vuhilni. Metody vyznachennia mekhanichnoi mitsnosti, GOST 21289-2018 (2018).
5. Castillo, R., Peña Farfal, C., Neira, Y., & Freer, J. (2016). Advances in Analytical Methodologies based on Infrared Spectroscopy for Analysis of Lignocellulosic Materials: From Classic Characterization of Functional Groups to FT-IR Imaging and Micro-Quantification. In book: Fourier Transform Infrared Analysis. Methods, Analysis and Research Insights. Chapter: 2. Publisher: Nova Sciences.
6. Dorozhnia karta rozvytku bioenerhetyky v Ukraini do 2050 roku i Plan dii do 2025 roku (2021). Retrieved from https://saf.org.ua/news/1266/.
7. Garbage Review No. 266. (2025). Retrieved from https://waste.ua/index.php?page=ad&id=50162
8. Halysh, V. V., Mukalo, Ye. O., Kozakevych, R. B., & Kartel M. T. (2016). Oderzhannia ta vlastyvosti sorbtsiinykh materialiv medychnoho pryznachennia zi shkaralupy plodovykh kistochok. Khimiia, fizyka ta tekhnolohiia poverkhni, 7(3), 361-369. doi: http://dx.doi.org/10.15407/hftp07.03.361
9. Hanzhenko, O. M., & Humentyk, M. Ya. (2016). Teplotvorni vlastyvosti tverdoho biopalyva. Bioenerhetyka, 1(7), 14-16.
10. Heletukha, H. H., Zheliezna, T. A., & Drahniev, S. V. (2018). Analiz mozhlyvostei vyrobnytstva ta vykorystannia bryketiv z ahrobiomasy v Ukraini. Analitychna zapyska UABIO, 20.
11. Huang, Yu., Wang, L., Chao, Y., Nawawi, D., Akiyama, T., Yokoyama, T. & Matsumoto, Y. (2012). Analysis of Lignin Aromatic Structure in Wood Based on the IR Spectrum. Journal of Wood Chemistry and Technology, 32, 294-303. doi: http://dx.doi.org/10.1080/02773813.2012.666316.
12. Khudolieieva, L. V., Kutsokon, N. K., Rashydov, N. M., & Dugan, O. M. (2016). Quantitative and qualitative evaluations of environmentally dangerous wastes emission from burning wood comparing to natural gas and coal. Studia Biologica, 10(3–4), 61–70. doi: https://doi.org/10.30970/sbi.1003.491
13. Kindzera, A., Kshyvetskyy, B., & Kindzera, D. (2025). Use of thermally modified wood after the end of its service life as a raw material for fuel pellet production. Environmental Problems. 10(4), 182-190 doi: https://doi.org/10.23939/ep2025.02.182.
14. Kindzera, D. P., Atamaniuk, V. M., Hosovskyi, R. R., & Motil, I. M. (2013). Doslidzhennia protsesu formuvannia palyvnykh bryketiv iz roslynnoi syrovyny ta vyznachennia yikh kharakterystyk. Naukovyi visnyk NLTU Ukrainy, 23(17), 138-146.
15. Klymenko, V. V., Kravchenko, V. I., Bokov, V. M., & Hutsul, V. I. (2017). Tekhnolohichni osnovy vyhotovlennia biopalyva z roslynnykh vidkhodiv ta yikh kompozytiv: Monohrafiia. Kropyvnytskyi: PP «Ekskliuzyv-System».
16. Korinchuk, D. M. (2021). Naukovi osnovy enerhoefektyvnykh tekhnolohii vyrobnytstva tverdoho bio- ta torfopalyva. (Dysertatsiia doktora tekhnichnykh nauk). Instytut tekhnichnoi teplofizyky NAN Ukrainy. (українська)
17. Korinenko, B. V., & Ranskiy, A. P. (2023). Alternatyvna enerhetyka: otrymannia syntez-nafty pry piroliznii pererobtsi polipropilenovykh vidkhodiv. Visnyk Vinnytskoho politekhnichnoho instytutu, 2, 6-14. doi: https://doi.org/10.31649/1997-9266-2023-167-2-6-14.
18. Korokhodova, O., Chernenko, N., Moiseienko, T., & Hlushchenko, Ya. (2022). Analysis of the attractiveness of renewable energy in certain countries. Time Description of Economic Reforms, 3, 74-82. doi: https://doi.org/10.32620/cher.2022.3.10
19. Long, H., Li, X., Wang, H., & Jia, J. (2023). Biomass resources and their bioenergy potential estimation: A review. Renewable and Sustainable Energy Reviews, 26, 344-352. doi: https://doi.org/10.1016/j.rser.2013.05.035.
20. Machado, G., Leon, S., Santos, F., Lourega, R., Lima, J., Mollmann, M., & Eichler, P. (2016). Literature Review on Furfural Production from Lignocellulosic Biomass. Natural Resources, 07(03). 115-129. doi: https://doi.org/10.4236/nr.2016.73012.
21. Makarov, A. S., Shkutkova, O. V., Klishchenko, R. Ye., Lysenko, L. L., Kosyhina, I. M., Zinin, V. V., & Konoval, O. A. (2024). Vlastyvosti kompozytsiinoho palyva na osnovi pirokarbonu – produktu pirolizu shyn. Voprosy himii i himicheskoj tehnologii, 2, 61-69. doi: http://dx.doi.org/10.32434/0321-4095-2024-153-2-61-69
22. Miroshnichenko, D., Zhylina M., & Shmeltser, K. (2024). Modern Use of Biochar in Various Technologies and Industries. A Review. Chemistry & Chemical Technology, 18(2), 232–243. doi: https://doi.org/10.23939/chcht18.02.232
23. Movchaniuk, O. M., & Ostapenko, A. A. (2024). Pidvyshchennia mitsnosti paperu dlia hofruvannia z vtorynnoho volokna kukurudzianymy krokhmaliamy. Vcheni zapysky, 35(74), 5, 43-48. doi: https://doi.org/10.32782/2663-5941/2024.5.2/08.
24. Nanda, S., Mohammad, J., Sivamohan N. R., Janusz A. K. & Ajay K. D. (2013). Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conversion and Biorefinery, 4(2), 157-191. doi: http://dx.doi.org/10.1007/s13399-013-0097-z.
25. Palyva tverdi mineralni. Vyznachennia naivyshchoi teploty zghoriannia metodom spaliuvannia v kalorymetrychnii bombi ta obchyslennia nainyzhchoi teploty zghoriannia. DSTU ISO 1928:2006 (ISO 1928:1995, IDT (2006).
26. Pro Tsili staloho rozvytku Ukrainy na period do 2030 roku : Ukaz Prezydenta Ukrainy 2019, № 722/2019 (2019). Retrieved from https://zakon.rada.gov.ua/laws/show/722/2019. (українська)
27. Pstrowska, K., Łużny, R., Fałtynowicz, H., Jaroszewska K., Postawa K., Pyshyev, S., & Witek-Krowiak, A. (2024). Unlocking Sustainability: A Comprehensive Review of Up-Recycling Biomass Waste into Biochar for Environmental Solutions. Chemistry & Chemical Technology, 18(2), 211–231. doi: https://doi.org/10.23939/chcht18.02.211
28. Qusay, H., Patrik, V., Tariq, J. A.-M., Bashar, M. A., Sameer, A., Haitham, M. A., Khudhair, A.-J., Zuhair, А. S., Hayder, M. S., & Marek, J. (2025). The renewable energy role in the global energy Transformations. Renewable Energy Focus, 48, 100545. doi: https://doi.org/10.1016/j.ref.2024.100545
29. Ranskiy, A. P., Korinenko, B. V., Hordiienko, O. A., & Yevdokymenko, V. O. (2023). Alternatyvna enerhetyka: otrymannia palyvnykh bryketiv iz pirokarbonu termodestruktsii polimernykh vidkhodiv. Visnyk Vinnytskoho politekhnichnoho instytutu, 1, 13–20. doi: https://doi.org/10.31649/1997-9266-2023-166-1-13-20
30. Silva, S., & Chandel, A. (2012). D-Xylitol: Fermentative production, application and commercialization. Springer Berlin: Heidelberg.
31. Skliarenko, Ye. V. (2017). Stvorennia piroliznoi tekhnolohii ta ustanovky dlia termokhimichnoi konservatsii roslynnoi biomasy. (Dysertatsiia doktora tekhnichnykh nauk). Kyiv: NAN Ukrainy, In-t tekhnichnoi teplofizyky.
32. Smyrnov, V. O., Serhieiev, P. V., & Biletskyi, V. S. (2011). Tekhnolohiia zbahachennia vuhillia: Navchalnyi posibnyk. Donetsk : Skhidnyi vydavnychyi dim.
33. Spangenberg, J. H. (2017). Hot Air or Comprehensive Progress? A Critical Assessment of the SDGs. Sustainable Developmen, 25(4):311-321. doi: https://doi.org/10.1002/sd.1657?urlappend=%3Futm_source%3Dresearchgate.net%26medium%3Darticle.
34. Storoshchuk, U., Malovanyy, M., Tymchuk, I., & Luchyt, L. (2021). Analysis of the main methods of solid waste management. Journal Environmental Problems, 6(4), 238-243. doi: https://doi.org/10.23939/ep2021.04.238
35. Topal, A., Holenko, I., & Haponych, L. (2020). Clean utilization of municipal solid wastes and alternative fuels derived from it. Journal Environmental Problems, 5(4), 202-209. doi: https://doi.org/10.23939/ep2020.04.202.
36. Vârban, R., Crișan, I., Vârban, D., Ona, A., Olar, L., Stoie, A., & Ștefan, R. (2021). Comparative FT-IR prospecting for cellulose in stems of some fiber plants: Flax, velvet leaf, hemp and jute. Applied Sciences, 11(18), 8570. doi: https://doi.org/10.3390/app11188570.
37. Volynets, B., Ein-Mozaffari, F., & Dahman, Y. (2017). Biomass processing into ethanol: pretreatment, enzymatic hydrolysis, fermentation, rheology, and mixing. Green Processing and Synthesis, 6(1), 1-22. doi: https://doi.org/10.1515/gps-2016-0017
38. Voronych, O. L., Kurta, S. A., & Sulym, L. Ya. (2012). Physical and Chemical Properties of Cellulose Fibres Obtained From Wallpaper Wastes. Physics and chemistry of solid state, 13(4), 1076-1082.
39. Yalechko, V. I. (2021). Pidvyshchennia efektyvnosti enerhotekhnolohichnoho protsesu spaliuvannia zdribnenoi derevnoi biomasy. (Dysertatsiia kandydata tekhnichnykh nauk). Natsionalnyi universytet «Lvivska politekhnika».
40. Zheliezna T. (2018). Bryketuvannia i vykorystannia ahrobiomasy v Ukraini. Perspektyvy dlia ahrariiv na Mizhnar. forumi bioenerhetychnykh tekhnolohii ta alternatyvnoi enerhetyky v ahrobiznesi. AgroEnergyDay. Retrieved from https://uabio.org/wp-content/uploads/2018/10/7-Zheliezna-UABio-AgroEnergyDAY2018-30102018.pdf