The article presents a study of the influence of Lemna minor population density on the bioelectric potential and current of model electro-biosystems in the laboratory сonditions using 500 and 1000 Ω resistors and in the open circuit. The positive effect of increasing the density of duckweed plants populations from 60 to 120 fronds/ml on the growth of bioelectric parameters of model electro-biosystems under load conditions and without resistors was revealed. Increasing the amount of duckweed biomass is a factor of enhancing the efficiency of electro-biosystems based on L. minor.
1. Azri, Y. M., Tou, I., Sadi, M. & Benhabyles, L. (2018). Bioelectricity generation from three ornamental plants: Chlorophytum comosum, Chasmanthe floribunda and Papyrus diffusus. International Journal of Green Energy, 15(4), 254–263. doi: https://doi.org/10.1080/15435075.2018.1432487
https://doi.org/10.1080/15435075.2018.1432487
2. Berg, G., & Smalla, K. (2009). Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, 68(1), 1–13. doi: https://doi.org/ 10.1111/j.1574-6941.2009.00654.x
https://doi.org/10.1111/j.1574-6941.2009.00654.x
3. Ceschin, S., Abati, S., Ellwood, N. T. W., Zuccarello, V. (2018). Riding invasion waves: spatial and temporal patterns of the invasive Lemna minuta from its arrival to its spread across Europe. Aquatic Botany, 150, 1–8. doi: https://doi.org/10.1016/j.aquabot.2018.06.002
https://doi.org/10.1016/j.aquabot.2018.06.002
4. Ceschin, S., Crescenzi, M. & Iannelli, M.A. (2020). Phytoremediation potential of the duckweeds Lemna minuta and Lemna minor to remove nutrients from treated waters. Environmental Science and Pollution Research, 27, 15806–15814. doi: https://doi.org/10.1007/s11356-020-08045-3
https://doi.org/10.1007/s11356-020-08045-3
5. Cheng, J., Landesman, L., Bergmann, B. A., Classen, J. J., Howard, J. W., & Yamamoto, Y. T. (2002). Nutrient removal from swine lagoon liquid by Lemna minor 8627. Trans ASAE, 45, 1003–1010.
https://doi.org/10.13031/2013.9953
6. Deng, H., Chen Z., & Zhao F. (2012). Energy from Plants and Microorganisms: Progress in Plant–Microbial Fuel Cells. СhemSusChem, 5, 1006–1011. doi: https://doi.org/10.1002/cssc.201100257
https://doi.org/10.1002/cssc.201100257
7. Deng, H., Cai, L., Jiang, Y., & Zhong, W. (2016). Application of Microbial Fuel Cells in Reducing Methane Emission from Rice Paddy. Huan Jing Ke Xue, 37 (1), 359-365. https://doi.org/10.13227/j.hjkx.2016.01.046
8. Gubanov, I. A., Kiseleva, K. V., Novikov, V. S., & Tikhomirov, V. N. (2002). Lemna minor L. – Duckweed small. Illustrated determinant to plants of Middle Russia, Vol 1, Ferns, horsetails, moss, gymnosperms, angiosperms (monocotyledons). Moskva, Tovarishchestvo nauchnykh izdaniy KMK, Institut tekhnologicheskikh issledovaniy.
9. Helder, M., Strik, D. P., Hamelers, H. V. M., Kuhn, A. J., Blok, C., & Buisman, C. J. N. (2010). Concurrent bio-electricity and biomass production in three Plant-Microbial Fuel Cells using Spartina anglica, Arundinella anomala and Arundo donax. Bioresourсe Technology, 101(10), 3541–3547. doi: https://doi.org/ 10.1016/j.biortech.2009.12.124
https://doi.org/10.1016/j.biortech.2009.12.124
10. Hubenova, Y., & Mitov, M. (2012). Conversion of solar energy into electricity by using duckweed in direct photosynthetic plant fuel cell. Bioelectrochemistry, 87, 185–191. doi: https://doi.org/ 10.1016/j.bioelechem.2012.02.008
https://doi.org/10.1016/j.bioelechem.2012.02.008
11 Iqbal, J., Javed, A., & Baig, M. A. (2019). Growth and nutrient removal efficiency of duckweed (lemna minor) from synthetic and dumpsite leachate under artificial and natural conditions. PLoS One, 14(8), e0221755. doi: https://doi.org/10.1371/journal.pone.0221755
https://doi.org/10.1371/journal.pone.0221755
12. Kabutey, F. T., Zhao, Q., Wei, L., Ding, J., Antwi, P., Quashie, F. K. & Wang, W. (2019). An overview of plant microbial fuel cells (PMFCs): Configurations and applications. Renewable and Sustainable Energy Reviews, 110 (C), 402-414. doi: https://doi.org/10.1016/j.rser.2019.05.016
https://doi.org/10.1016/j.rser.2019.05.016
13. Kaku, N., Yonezawa, N., Kodama, Y., & Watanabe, K. (2008). Plant/microbe cooperation for electricity generation in a rice paddy field. Applied Microbiology & Biotechnology, 79(1), 43–49. doi: https://doi.org/10.1007/s00253-008-1410-9
https://doi.org/10.1007/s00253-008-1410-9
14. Landolt, E. (1986). Biosystematic investigation on the family ofduckweeds: The family of Lemnaceae. A monograph study. Zurich, Switzerland, Geobotanischen Institute.
15. Nitisoravut, R., & Regmi, R. (2017). Plant microbial fuel cells: A promising biosystems engineering. Renewable and Sustainable Energy Reviews, 76, 81–89. doi: https://doi.org/10.1016/j.rser.2017.03.064
https://doi.org/10.1016/j.rser.2017.03.064
16. Oodally, A., Gulamhussein, M., & Randall, D. G. (2019). Investigating the performance of constructed wetland microbial fuel cells using three indigenous South African wetland plants. Journal of Water Process Engineering, 32, 100930, 1–8. doi: https://doi.org//10.1016/j.jwpe.2019.100930
https://doi.org/10.1016/j.jwpe.2019.100930
17. Rusyn, I. B., & Medvediev, O. V. (2016). UA Patent No.112093. Ukrainskyi instytut intelektualnoi vlasnosti (Ukrpatent).
18. Rusyn, I. B., Vakuliuk, V. V., & Burian, O. V. (2019). Prospects of use of Caltha palustris in soil plant-microbial eco-electrical biotechnology. Regulatory Mechanisms in Biosystems,10(2), 233-238. doi: https://doi.org/10.15421/021935
https://doi.org/10.15421/021935
19. Sangeetha, T., & Muthukumar, M. (2013). Influence of electrode material and electrode distance on bioelectricity production from sago-processing wastewater using microbial fuel cell. Environmental Progress & Sustainable Energy, 32 (2), 390–395. doi: https://doi.org/10.1002/ep.11603
https://doi.org/10.1002/ep.11603
20. .Strik, D. P. B. T. B., Hamelers, H. V. M., Snel, J. F. H., & Buisman, C. J. (2008). Green electricity production with living plants and bacteria in a fuel cell. International Journal of Energy Research, 32(9), 870–876. doi: https://doi.org/10.1002/er.1397
https://doi.org/10.1002/er.1397
21. Timmers, R. A., Rothballer, M., Strik, D. P. B. T. B., Engel, M., Schulz, S., Schloter, M., Hartmann, A., Hamelers, B., & Buisman, C. (2012). Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell. Applied Microbiology & Biotechnology, 94(2), 537–548. doi: https://doi.org/10.1007/s00253-012-3894-6
https://doi.org/10.1007/s00253-012-3894-6
22. Tou, I., Azri, Y. M., Sadi, M. H., Lounici, H., & Кebbouche-Gana, S. (2019). Chlorophytum microbial fuel cell characterization. International Journal of Green Energy, 16(12), 1-13. doi: https://doi.org/10.1080/15435075.2019.1650049
https://doi.org/10.1080/15435075.2019.1650049
23. Wang, J., Song, X., Wang, Y., Bai, J., Li, M., Dong, G., Lin, F., Lv, Y., & Yan, D. (2017). Bioenergy generation and rhizodegradation as affected by microbial community distribution in a coupled constructed wetland-microbial fuel cell system associated with three macrophytes. Science of the Total Environment, 607–608, 53–62. doi: https://doi.org/10.1016/j.scitotenv.2017.06.243
https://doi.org/10.1016/j.scitotenv.2017.06.243
24. Ziegler, P., Adelmann, K., Zimmer, S., Schmidt, C., Appenroth, K. J. (2014) Relative in vitro growth rates of duckweeds (Lemnaceae) - the most rapidly growing higher plants. Plant Biol, 17, 33–41. doi: https://doi.org/10.1111/plb.12184
https://doi.org/10.1111/plb.12184