IMPACT OF OIL CONTAMINATION AND HUMATES ON THE GROWTH OF POACEAE

EP.
2022;
: pp.62-70
1
Ivan Franko National University of Lviv
2
Ivan Franko National University of Lviv
3
Ivan Franko National University of Lviv

The article examines the impact of oil contamination and humates (Humifield Forte and Fulvital Plus) on the growth characteristics of Poaceae, such as corn (Zea mays L.) of Dostatok 300 MV hybrid, spring barley of the Karat variety and spring wheat of the Diana variety. Oil contamination has proved to inhibit plant growth and affect a decrease in the amount of photosynthetic pigments in the leaves, which can be explained by oil toxicity and the acquired hydrophobicity of soil. Soaking seeds in humate solution proved the effectiveness of their use for corn (Zea mays  L.) of Dostatok 300 MV hybrid and spring barley of the Karat variety: the plants developed well and accumulated biomass actively. The use of humates for spring wheat of the Diana variety did not produce the desired effect: growth characteristics were lower, and the studied plants were weaker. An increase in the number of photosynthetic pigments, especially carotenoids, in the leaves of Poaceae plants indicates the feasibility of using humates to increase the stress resistance of plants in the early stages of growth and development in conditions of oil contamination of soil. A stimulating effect of the combination of oil contamination and Fulvital Plus on the growth of Poaceae was proved. Fulvital Plus is a growth stimulator and deficiency corrector of plant nutrition elements. The results obtained from the research prove the effectiveness of using humates for plants and can be used to increase the stress resistance and yield capacity of Poaceae in man-made conditions and to develop phytoremediation technologies for restoring oil-contaminated areas.

1. Banks, M. K., & Schultz, K. E. (2005). Comparison of plants for germination toxicity tests in petroleum-contaminated soils. Water, Air, and Soil Pollution, 167 (1-4), 211–219. doi: https://doi.org/10.1007/s11270-005-8553-4

https://doi.org/10.1007/s11270-005-8553-4

2. Danalatos, N., Archontoulis, S., & Mitsios, I. (2007). Potential growth and biomass productivity of miscanthus×giganteus as affected by plant density and N-fertilization in Central Greece. Biomass and Bioenergy, 31(2-3), 145–152. doi: https://doi.org/10.1016/j.biombioe.2006.07.004

https://doi.org/10.1016/j.biombioe.2006.07.004

3. Dzhura, N. (2011). Perspektyvy fitoremediatsii naftozabrudnenykh gruntiv roslynamy Faba bona Medic. (Vicia faba L.) [Prospects for phytoremediation of oil-contaminated soils by Faba bona Medic plants. (Vicia faba L.)]. Visnyk Lvivskoho Universytetu. Seriia Biolohichna, (57), 117–124. Retrieved from http://prima.lnu.edu.ua/faculty/biologh/wis/57/6/15/15.pdf

4. Dzhura, N., & Podan, I. (2017). Ekolohichni naslidky dovhotryvaloho naftovydobutku na Starosambirskomu rodovyshchi [Ecological consequences of extended oil production at Staryi Sambir petroleum deposit]. Visnyk Lvivskoho Universytetu. Seriia Biolohichna, 76, 120–127. Retrieved from http://prima.lnu.edu.ua/faculty/biologh/wis/76/4/15/15.pdf

https://doi.org/10.30970/vlubs.2017.76.15

5. Gorova, A., Pavlychenko, A., Kulyna, S. and Shkre­met­ko, O., (2012). Ecological problems of post-industrial mining areas.  Geomechanical Processes During Underground Mining, 35‒40. doi: https://doi.org/10.1201/b13157

https://doi.org/10.1201/b13157

6. Gupta, V. K., Jain, P. K., Gaur, R. K., Lowry, M., Jaroli, D. P., & Chauhan, U. K. (2011). Bioremediation of petroleum oil contaminated soil and water. Research Journal of Environmental Toxicology, 5(1), 1–26. doi: https://doi.org/10.3923/rjet.2011.1.26

https://doi.org/10.3923/rjet.2011.1.26

7. Horova, A., Pavlychenko, A., & Vysochyn, L. (2015). Vykorystannia huminovykh rechovyn dlia vidnovlennia gruntiv u hirnychodobuvnykh rehionakh [Use of humic substances for soil restoration in mining regions]. II International Scientific and Practical Conference Restoration of Biotic Potential of Agroecosystems (pp. 50–51). Dnipropetrovsk; Arbuz.

8. Kim, S., Da, K., & Mei, C. (2012). An efficient system for high-quality large-scale micropropagation of miscanthus × giganteus plants. In Vitro Cellular & Developmental Biology - Plant, 48(6), 613–619. doi: https://doi.org/10.1007/s11627-012-9472-x

https://doi.org/10.1007/s11627-012-9472-x

9. Klimova, N. (2006). Deiaki pytannia metodyky otsinky stanu zabrudnennia gruntiv unaslidok naftohazovydobutku [Some questions of the methodic of soil pollution state value as a result of oil and gas mining]. Visnyk Lvivskoho Universytetu. Seriia «Heohrafiia», 33, 144–151. doi: http://dx.doi.org/10.30970/vgg.2006.33.2674

10.  Matsiuk, D. (2006). Ekonomiko-matematychni ta ekoloho-enerhetychni aspekty vykorystannia sukhoi biomasy yak alternatyvnoho dzherela enerhii [Economic-mathematical and ecological-power aspects of dry mass usage as alternative source of energy]. Visnyk Vinnytskoho Politekhnichnoho Instytutu, 5, 111–113. Retrieved from https://visnyk.vntu.edu.ua/index.php/visnyk/article/view/348

11. Medkov, A., Stefanovska, T., Pidlisniuk, V., & Ponomarenko, S. (2017). Vplyv rehuliatoriv rostu roslyn na adaptyvni vlastyvosti miskantusu hihantskoho (Miscanthus x giganteus) dlia vyrobnytstva biomasy na gruntakh, zabrudnenykh vazhkymy metalamy [Impact of plant growth regulators to Miscanthus x giganteus establishment while producing biomass at land contaminated by heavy metals]. Biolohichni Studii, 11(3-4), 100–101. doi:  http://dx.doi.org/10.30970/sbi.1103

https://doi.org/10.30970/sbi.1103

12. Musiienko, M., Parshykova, T., & Slavnyi, P. (2001). Spektrofotometrychni metody v praktytsi fiziolohii, biokhimii ta ekolohii roslyn [Spectrophotometric methods in the practice of physiology, biochemistry and plant ecology]. Fitosotsiotsentr, Kyiv.

13. Park, S., Kim, K. S., Kim, J.-T., Kang, D., & Sung, K. (2011). Effects of humic acid on phytodegradation of petroleum hydrocarbons in soil simultaneously contaminated with heavy metals. Journal of Environmental Sciences, 23(12), 2034–2041. doi: https://doi.org/10.1016/s1001-0742(10)60670-5

https://doi.org/10.1016/S1001-0742(10)60670-5

14. Pidlisnyuk, V., Trögl, J., Stefanovska, T., Shapoval, P., & Erickson, L. (2016). Preliminary results on growing second generation biofuel crop miscanthus x giganteus at the polluted military site in Ukraine. Nova Biotechnologica Et Chimica, 15(1), 77–84. doi: https://doi.org/10.1515/nbec-2016-0008

https://doi.org/10.1515/nbec-2016-0008

15. Podan, I. I., & Dzhura, N. M. (2019). Influence of oil pollution and humates on growth of Miscanthus Plants. Ecological Sciences, 2, 182–186. doi: https://doi.org/10.32846/2306-9716-2019-2-25-30

https://doi.org/10.32846/2306-9716-2019-2-25-30

16. Stefanovska, T., Pidlisniuk, v, Bilyi, O., Kvak, V., Tsvihun, H., & Shapoval, P. (2017). Ahronomichni aspekty vyroshchuvannia miskantusu hihantskoho (Miscanthus xgiganteus) yak syrovyny dlia vyrobnytstva tverdoho biopalyva na zabrudnenykh vnaslidok viiskovoi diialnosti gruntakh [Agronomic aspects of growing Miscanthus x giganteus as a raw material for the production of solid biofuels on soils contaminated because of military activity]. Biolohichni Studii, 11(3-4), 99–100. doi: http://dx.doi.org/10.30970/sbi.1103

https://doi.org/10.30970/sbi.1103

17. Tumanyan, A., Tyutyuma, N., Bondarenko, A., & Shcherbakova, N. (2017). Influence of Oil Pollution on Various Types of Soil. Chemistry and Technology of Fuels and Oils, 53(3), 369–376. doi: http://dx.doi.org/10.1007/s10553-017-0813-7

https://doi.org/10.1007/s10553-017-0813-7

18. Turgay, O. C., Erdogan, E. E., & Karaca, A. (2009). Effect of humic deposit (leonardite) on degradation of semi-volatile and heavy hydrocarbons and soil quality in crude-oil-contaminated soil. Environmental Monitoring and Assessment, 170(1-4), 45–58. doi: https://doi.org/10.1007/s10661-009-1213-1

https://doi.org/10.1007/s10661-009-1213-1