The state of seed self-regeneration of woody plants of Kyrylivka Park (Dnipro, Ukraine) in areas with a strong, moderate and non-existent level of recreational load was studied. Floristic methods (estimates of species richness, determination of floristic community and homogeneity), methods of ecological analysis of vegetation, physico-chemical methods of soil analysis, statistical methods are applied. It was established for the first time that in Kyrylivka Park, artificial stands are capable of forming a sufficient amount of viable undergrowth of autochthonous (53,5%) and introduced (46,5%) species. The amount of tree growth of adventitious plants in the areas according to the level of recreational load is distributed as follows: with no load – 32,2% of the number of self-regenerating trees, with moderate – 41,3%, with strong – 89,7%. The indices of species richness of Margalef and Menkhinik of self-regenerating tree species for the site with a strong recreational load turned out to be the largest (at the expense of adventitious species) compared to the sites with a moderate recreational load and without it. The calculated Koch index of biotic dispersion (40.0%) indicates a certain process of floristic homogenization of the tree stand in the investigated territory of the park. The correlation coefficients between the number of self-restored allochthonous and autochthonous tree species for the studied areas with strong, moderate and absent recreational loads are significant (0.90, 0.92 and 0.88 respectively). The need to analyze and forecast the possible remote consequences of the introduction of alien species in the composition of the dendroflora is emphasized.
1. Adla, K., Dejan, K., Neira, D., & Dragana, Š. (2022). Chapter 9 - Degradation of ecosystems and loss of ecosystem services. In: J. C. Prata, A. I. Ribeiro, & T. Rocha-Santos (Eds.), One Health. Integrated Approach to 21st Century Challenges to Health, 281-327. doi: https://doi.org/10.1016/B978-0-12-822794-7.00008-3
https://doi.org/10.1016/B978-0-12-822794-7.00008-3
2. Alvey, A. A. (2006). Promoting and preserving biodiversity in the urban forest. Urban forestry & urban greening, 5(4), 195-201. doi: https://doi.org/10.1016/j.ufug.2006.09.003
https://doi.org/10.1016/j.ufug.2006.09.003
3. APG III (2009). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161(2), 105-121. doi: https://doi.org/10.1111/j.1095-8339.2009.00996.x
https://doi.org/10.1111/j.1095-8339.2009.00996.x
4. Baranovski, B. O., Maniuk, V. V., Ivanko, I. A., & Karmyzova, L. O. (2017). Analiz flory natsionalnoho pryrodnoho parku «Orilskyi» [Analysis of the flora of the Orilskyi National Nature Park]. Lira, Dnipro (in Ukrainian).
5. Battaglia, J.P., Kearney, C.M., Guerette, K., Corbishley, J., Sanchez, E., Kent, B., Storie, H., Sharp, E., Martin, S., Saberito, M., Blake, J.D., Feinn, R.S., Mital, J., & Kaplan, L.A.E. (2022). Use of multiple endpoints to assess the impact of captivity on gut flora diversity in Long Island Sound Fundulus heteroclitus. Environmental Biology of Fishes, 105, 867-883. doi: https://doi.org/10.1007/s10641-022-01293-x
https://doi.org/10.1007/s10641-022-01293-x
6. Belgard, A.L. (1950). Forest vegetation of the south-east of the Ukrainian SSR. Publishing House of T.G. Shevchenko Kiev State University, Kiev.
7. Borges, R. A. X., Carneiro, M. A. A., & Viana, P. L. (2011). Altitudinal distribution and species richness of herbaceous plants in campos rupestres of the Southern Espinhaço Range, Minas Gerais, Brazil. Rodriguesia, 62(1), 139-152. https://doi.org/10.1590/2175-7860201162110
https://doi.org/10.1590/2175-7860201162110
8. da Rocha, J.P.R., Sturião, W.P., Nogueira, N.O., Passos, R.R., Donagemma, G.K., Rangel, O.J.P., & Bhattarai, R. (2020). Soil quality indicators to evaluate environmental services at different landscape positions and land uses in the Atlantic Forest biome. Environmental and Sustainability Indicators, 7, 100047. doi: https://doi.org/10.1016/j.indic.2020.100047
https://doi.org/10.1016/j.indic.2020.100047
9. de Barros Ruas, R., Costa, L.M.S., & Bered, F. (2022). Urbanization driving changes in plant species and communities - A global view. Global Ecology and Conservation, 38, e02243. doi: https://doi.org/10.1016/j.gecco.2022.e02243
https://doi.org/10.1016/j.gecco.2022.e02243
10. Denisyuk, N.V., & Melnyk V.Y. (2020). Otsinyuvannya fitomeliorativnoi roli zelenykh nasadzhen parkiv i skveriv mista Rivne [Assessment of the phytomelioration role of green spaces in parks and squares of the northern district of Rivne]. Scientific bulletin of UNFU, 30(2), 38-43. doi: https://doi.org/10.36930/40300207
https://doi.org/10.36930/40300207
11. Didur, O., Kulbachko, Y., Ovchynnykova, Y., Pokhylenko, A., & Lykholat, T. (2019). Zoogenic mechanisms of ecological rehabilitation of urban soils of the park zone of megapolis: earthworms and soil buffer capacity. Journal of Environmental Research, Engineering and Management, 75(1), 24-33. doi: https://doi.org/10.5755/j01.erem.75.1.21121
https://doi.org/10.5755/j01.erem.75.1.21121
12. Divakara, B.N., Nikitha, C.U., Nölke, N., Tewari, V.P., & Kleinn, C. (2022). Tree diversity and tree community composition in northern part of megacity Bengaluru, India. Sustainability, 14, 1295. doi: https://doi.org/10.3390/su14031295
https://doi.org/10.3390/su14031295
13. Dobrochayeva, D.N., Kotov, M.I., &Prokudin, Y.N. (1987). Manual of higher plants of Ukraine. Naukova dumka, Kyiv.
14. Dongli, D., Chengxing, W., Yuchen, Z., Changchun, L., & Ning, W. (2022). Coexistence mechanism of alien species and local ecosystem based on network dimensionality reduction method. Chaos, Solitons & Fractals, 159, 112077. doi: https://doi.org/10.1016/j.chaos.2022.112077
https://doi.org/10.1016/j.chaos.2022.112077
15. Du, C., Jia, W., Chen, M., Yan, L., & Wang, K. (2022). How can urban parks be planned to maximize cooling effect in hot extremes? Linking maximum and accumulative perspectives. Journal of environmental management, 317, 115346. doi: https://doi.org/10.1016/j.jenvman.2022.115346
https://doi.org/10.1016/j.jenvman.2022.115346
16. Fernández-Palacios, J.M., Kreft, H., Irl, S., Norder, S., Ah-Peng, C., Borges, P., Burns, K. C., de Nascimento, L., Meyer, J.Y., Montes, E., & Drake, D.R. (2021). Scientists' warning – The outstanding biodiversity of islands is in peril. Global ecology and conservation, 31, e01847. doi: https://doi.org/10.1016/j.gecco.2021.e01847
https://doi.org/10.1016/j.gecco.2021.e01847
17. Guo, Q., Qian, H., & Zhang, J. (2022). Does regional species diversity resist biotic invasions? Plant Diversity. doi: https://doi.org/10.1016/j.pld.2022.09.004
https://doi.org/10.1016/j.pld.2022.09.004
18. He, M., Wang, Y., Wang, W. J., & Xie, Z. (2022). Therapeutic plant landscape design of urban forest parks based on the five senses theory: A case study of Stanley Park in Canada. International Journal of Geoheritage and Parks, 10, 97-112. doi: https://doi.org/10.1016/j.ijgeop.2022.02.004
https://doi.org/10.1016/j.ijgeop.2022.02.004
19. Ivanchenko, O. Ye. (2015). Analiz vydovoho skladu ta sanitarnoho stanu derevnykh nasadzhen parku Kyrylivka (im. S.M. Kirova) m. Dnipro. [Analysis of the species composition and sanitary condition of tree plantations in Kyrylivka Park (named after S.M. Kirov) in Dnipro]. Problems of bioindications and ecology, 20(2), 104-121.
20. Karagöz, F.P., Dursun, A., & Karaşal, M. (2022). A review: use of soilless culture techniques in ornamental plants. Ornamental Horticulture, 28(2), 172-180. doi: https://doi.org/10.1590/2447-536X.v28i2.2430
https://doi.org/10.1590/2447-536x.v28i2.2430
21. Kohno, M. A. (1999). Introduktsiia derevnykh roslyn v Ukraini: zdobutky y perspektyvy [Introduction of woody plants in Ukraine: achievements and prospects]. Introduction of plants, 1, 27-29 (in Ukrainian).
22. Kohno, M. A. (2007). Istoriia introduktsii derevnykh roslyn (korotkyi naris). [History of introduction of woody plants in Ukraine (short essay)]. Phytosocial Center, Kyiv (in Ukrainian).
23. Kunz, S.H., Ivanauskas, N.M., Martins, S.V., & Stefanello, E.S.D. (2009). Analysis of floristic similarity between forests of the Upper Xingu River and forests of the Amazon Basin and of the Planalto Central. Brazilian Journal of Botany, 32(4), 725–736. doi: https://doi.org/10.1590/S0100-84042009000400011
https://doi.org/10.1590/S0100-84042009000400011
24. Lakicevic, M., Reynolds, K.M., Orlovic, S., & Kolarov, R. (2022). Measuring dendrofloristic diversity in urban parks in Novi Sad (Serbia). Trees, Forests and People, 8, 100239. doi: https://doi.org/10.1016/j.tfp.2022.100239
https://doi.org/10.1016/j.tfp.2022.100239
25. Liu, R., & Xiao, J. (2020). Factors affecting users' satisfaction with urban parks through online comments data: Evidence from Shenzhen, China. International journal of environmental research and public health, 18(1), 253. doi: https://doi.org/10.3390/ijerph18010253
https://doi.org/10.3390/ijerph18010253
26. Lososová, Z., Chytrý, M., Tichý, L., Danihelka, J., Fajmon, K., Hájek, O., Kintrová, K., Láníková, D., Otýpková, Z., & Řehořek, V. (2012). Biotic homogenization of Central European urban floras depends on residence time of alien species and habitat types. Biological Conservation, 145, 179-184. doi: https://doi.org/10.1016/j.biocon.2011.11.003
https://doi.org/10.1016/j.biocon.2011.11.003
27. Lykholat, Y.V., Didur, O.O., Drehval, O. A., Khromykh, N.O., Sklyar, T.V., Lykholat, T.Y., Liashenko, O.V., & Kovalenko, I.M. (2022). Endophytic community of Chaenomeles speciosa fruits: Screening for biodiversity and antifungal activity. Regulatory Mechanisms in Biosystems, 13(2), 130-136. doi: https://doi.org/10.15421/022218
https://doi.org/10.15421/022218
28. Lykholat, Y., Khromykh, N., Didur, O., Alexeyeva, A., Lykholat, T., & Davydov, V. (2018). Modeling the invasiveness of Ulmus pumila in urban ecosystems under climate change. Regulatory Mechanisms in Biosystems, 9(2), 161-166. doi: https://doi.org/10.15421/021824
https://doi.org/10.15421/021824
29. Macagnan, T.A., de Camargo, S., & de Azevedo Eric, C.O. (2011). A subtribo Cranichidinae Lindl. (Orchidaceae) no Estado do Paraná, Brasil. Brazilian Journal of Botany, 34(3), 447-461. doi: https://doi.org/10.1590/S0100-84042011000300017
https://doi.org/10.1590/S0100-84042011000300017
30. Melnychuk, N. Y., & Henyk Y. V. (2019). Ekologo-biologichni osnovy formuvannya sadovo-parkovykh grup parkiv mista Lvova. [Ecological and biological bases of the formation of garden and park compositional groups of parks of the city of Lviv]. Scientific bulletin of UNFU, 29(6), 9-13. doi: https://doi.org/10.15421/40290601
https://doi.org/10.15421/40290601
31. Potgieter, L.J., Gaertner, M., O'Farrell, P.J., & Richardson, D.M. (2019). Perceptions of impact: Invasive alien plants in the urban environment. Journal of Environmental Management, 229, 76-87. doi: https://doi.org/10.1016/j.jenvman.2018.05.080
https://doi.org/10.1016/j.jenvman.2018.05.080
32. Rosenthal, J., Booth, R., Carolan, N., Clarke, O., Curnew, J., Hammond, C., Jenkins, J., McGee, E., Moody, B., Roman, J., Rossi, K., Schaefer, K., Stanley, M., Ward, E., & Weber, L. (2022). The impact of recreational activities on species at risk in Canada. Journal of Outdoor Recreation and Tourism, 100567. doi: https://doi.org/10.1016/j.jort.2022.100567
https://doi.org/10.1016/j.jort.2022.100567
33. Shamray, M.V., Pakhomov, O.Y., & Kabar, A.M. (2021). Self-restoration of woody plants in the conditions of the Botanical Garden of Dnipro National University. Ecology and Noospherology, 32(1), 47-50. doi: https://doi.org/10.15421/032108
https://doi.org/10.15421/032108
34. Shamray, M., & Pakhomov, O. (2022). Samovidnovlennia derevnykh roslyn v umovakh ekotopu lisoparku Druzhby mista Dnipro [Self-renewal of tree plants in the conditions of the ecotope of the forest park of the Friendship of the city of Dnipro]. Ecology and Noospherology, 33(1), 42-48. doi: https://doi.org/https://doi.org/10.15421/032207
https://doi.org/10.15421/032207
35. Shamrikova, E.V., Kondratenok, B. M., Tumanova, E. A., Vanchikova, E. V., Lapteva, E. M., Zonova, T. V., Lu-Lyan-Min, E. I., Davydova, A. P., Libohova, Z., & Suvannang, N. (2022). Transferability between soil organic matter measurement methods for database harmonization. Geoderma, 412, 115547. doi: https://doi.org/10.1016/j.geoderma.2021.115547
https://doi.org/10.1016/j.geoderma.2021.115547
36. Skrobala, V. M., & Diniljuk, R. M. (1996). Vplyv urbanizatsii na zminy pryrodnoho roslynnoho pokryvu. [The impact of urbanization on changes in natural vegetation cover]. Issues of socioecology, 2, 36-37.
37. Stikhareva, T., Ivashchenko, A., Kirillov, V., & Rakhimzhanov, A. (2021). Floristic diversity of threatened woodlands of Kazakhstan formed by Populus pruinosa Schrenk. Turkish Journal of Agriculture and Forestry, 45(2), 165-168. doi: https://doi.org/10.3906/tar-2006-70
https://doi.org/10.3906/tar-2006-70
38. Tan, K.H. (1998). Principles of soil chemistry. 3rd ed. Marcel Dekker, Inc., New-York, Basel, Hong Kong.
39. Tarasov, V.V. (2012). Flora Dnipropetrovskoi i Zaporizkoi oblastei. Sudynni roslyny. Bioloho-ekolohichna kharakterystyka [Flora of the Dnepropetrovsk and Zaporozhye regions. Vascular Plants with their Biology-ecological characteristic]. Lira, Dnіpropetrovsk (in Ukrainian).
40. Teixeira, C. P., Fernandes, C. O., Ryan, R., & Ahern, J. (2022). Attitudes and preferences towards plants in urban green spaces: Implications for the design and management of Novel Urban Ecosystems. Journal of environmental management, 314, 115103. doi:https://doi.org/10.1016/j.jenvman.2022.115103
https://doi.org/10.1016/j.jenvman.2022.115103
41. Trimanto, T. (2014). Acclimatization of plant collection from east nusa tenggara exploration (egon forest, mutis mount, and camplong park) at purwodadi botanic garden. Berkala Penelitian Hayati, 19(1), 5-10. doi:https://doi.org/10.23869/130
https://doi.org/10.23869/bphjbr.19.1.20132
42. van Kleunen, M., Essl, F., Pergl, J., Brundu, G., Carboni, M., Dullinger, S., Early, R., González-Moreno, P., Groom, Q. J., Hulme, P. E., Kueffer, C., Kühn, I., Máguas, C., Maurel, N., Novoa, A., Parepa, M., Pyšek, P., Seebens, H., Tanner, R., Touza, J., Verbrugge, L., Weber, E., Dawson, W., Kreft, H., Weigelt, P., Winter, M., Klonner, G., Talluto, M. V., & Dehnen-Schmutz, K. (2018). The changing role of ornamental horticulture in alien plant invasions. Biological reviews of the Cambridge Philosophical Society, 93(3), 1421-1437. doi:https://doi.org/10.1111/brv.12402
https://doi.org/10.1111/brv.12402
43. Vitenko, D. V., Shlapak, V. P., & Baiura, O. M. (2020). Ekolohichna plastychnist Maclura pomifera (Rafin.) Schneid v umovakh Ukrainy. [Ecological plasticity of Maclura pomifera (Rafin.) Schneid in the conditions of Ukraine]. Scientific bulletin of UNFU, 30(1), 74-78. doi:https://doi.org/10.36930/40300112
https://doi.org/10.36930/40300112
44. Voiko, N.Y., & Karanda, A.O. (2019). Vplyv pryrodnykh ta shtuchnykh chynnykiv na psykhoemotsiyniy stan lyudyny [The influence of natural and artificial factors on the psycho-emotional state of a person]. Urban planning and territorial planning, 69, 45–56.
45. von Staden, L., Lötter, M. C., Holness, S., & Lombard, A. T. (2022). An evaluation of the effectiveness of critical biodiversity areas, identified through a systematic conservation planning process, to reduce biodiversity loss outside protected areas in South Africa. Land Use Policy, 115, 106044. doi: https://doi.org/10.1016/j.landusepol.2022.106044
https://doi.org/10.1016/j.landusepol.2022.106044
46. Xu, H., Liu, Q., Wang, S., Yang, G., & Xue, S. (2022). A global meta-analysis of the impacts of exotic plant species invasion on plant diversity and soil properties. The Science of the total environment, 810, 152286. doi: https://doi.org/10.1016/j.scitotenv.2021.152286
https://doi.org/10.1016/j.scitotenv.2021.152286
47. Zarghi, A., & Hosseini, S.M. (2014). Effect of ecotourism on plant biodiversity in Chelmir zone of Tandoureh National Park, Khorasan RazaviProvince, Iran. Biodiversitas, 15, 224-228. doi: https://doi.org/10.13057/biodiv/d150215
https://doi.org/10.13057/biodiv/d150215
48. Zhang, J., & Gou, Z. (2021). Tree crowns and their associated summertime microclimatic adjustment and thermal comfort improvement in urban parks in a subtropical city of China. Urban Forestry & Urban Greening, 59, 126912. doi: https://doi.org/10.1016/j.ufug.2020.126912