Covariance analysis of altimetry data and absolute values of force in the Black Sea region

1
Department of Geodesy, Institute of Geodesy, Lviv Polytechnic National University

Order of the construction of the ECF and choice of the ACF are described. Essential parameters of the obtained ECF and optimal ACF for the analyzed data set are presented. Accuracy of the approximation ECF by corresponding ACF are presented also.

1. Tartachynska 3. Pobudova altymetro-hravimetrychnoho heoida metodom serednoi kvadratychnoi kolokatsii z dodatkovymy umovamy //Heodynamika. - 2000. - № 1 (2). - S. 62 - 67.
2. Marchenko A.N. Description of the Earth’s Gravity Field by the System of Potentials of non¬central multipoles. I. Theoretical backgrounds; II. Preliminary multipole analysis. Kinematics and Physics of Celestial Bodies. - 1987. - Vol.3. - № 2. - P. 54 - 62; Vol.3. - № 3. - P. 38 - 44.
3. Marchenko A.N., Abrikosov O.A. Covariance functions set derived from radial multipole potentials. // Gravity and Geoid, Springer-Verlag, Berlin Heidelberg, 1995. - P. 296 - 303.
4. Moritz H. Advanced Physical Geodesy. Wichmann, Karsruhe, 1980. 
5. Rapp R. The Ohio State 1991 Geopotential and Sea Surface Topography Harmonic Coefficient Model. // Depart. of Geod. Science. Rep. № 410. - Ohio State University, Columbus, 1991. 
6. Rapp R. and Nerem R. A Joint GSFC/DMA Project for Improving the Model of the Earth’s Gravitational Field. //Proceed, of the International Symposium No 113 “Gravity and Geoid”, Graz, Austria, 1994, Springer-Verlag Berlin Heidelberg. - P. 413 - 422. 
7. Tscherning C., Rapp R. Closed Covarianse Expressions for Gravity Anomalies, Geoid Undulations, and Deflection of the Vertical Implied by Anomaly Degree Variance Models //Depart. Geod. Science. № 208. - Ohio State University 1974. - 89p.