Aim. The aim is this research is the evaluation of the Earth’s rigid rotation as a component of global deformation fields in interconnection with angular distortions of the geocentric spatial coordinate system. Methodology. Solutions will be achieved by methods of projective differential (metric) geometry based on the differential presentation of transformations of Riemannian space images in the form of its complicated diffeomorphic manifolds. Based on the essence of the International Terrestrial Reference System (ITRS).in which the input data are given, and on a global scale the deformation fields, as a Riemannian manifold it is defined as a the tangent of Euclidean space. To solve the problem are used the methods of description the change of the Riemannian metric in the tangent Euclidean space, is parameterized by the Cartesian coordinate system. Results. The basis of the methods used enabled the results, which are the terms of its content. The practical application has a dual interpretation. In the former , an expression of angular distortions for needs of the deformation analysis is derived from formulas for angles of the rigid Earth's rotation into projections on ITRS coordinate planes. At the same time, it is proven that these angles are indicators of the coordinate system distortion. The hypothesis of probable deformations of the spatial geocentric coordinate system is substantiated by the geophysical content of the ITRS concept. The identity of conditions of the Earth's parameterization by ITRS and of the tangent Euclidean space parameterization by the Cartesian coordinate system has been proven. On this basis, the truthfulness of the hypothesis can be verified by empirical values of angles that are defined from results of GNSS-observations. In this case of significant importance, they are indicators of angular distortions of the ITRS system or an expression by deviations from the axes orthogonality in its ITRF version as measures of the oblique-angled Cartesian system into the any epoch of observation that follows. Using methods of projective differential geometry the formulas are obtained for the coordinate axes directions of the deformed system. Scientific novelty. It is proven that the approach for solving the problem of the deformation analysis in geodynamics based on the Riemannian geometry it is generalizing relative to its use. On this basis, prospects for filing of deformation fields by nonlinear functional models are substantiated. Practical significance. The obtained results are designed to be used for the evaluation of global deformation fields of the Earth and solving problems of the modern geodesy in its interconnection with geodynamics in the context of reference frame research. All analytical expression of angular distortions is given in general form, which is able to transfer the nonlinear deformation tendencies.
A methodology of the deformation analysis is adapted to be used as input data for the results of the Global Navigation Satellite System (GNSS) monitoring station coordinates, taking into account the probable ITRS angular distortions.
1. Kagan V. F. Osnovy teorii poverhnostej v tenzornom izlozhenii. Chast' 1,2 [Fundamentals of the theory of surfaces in tensor presentation. Part 1,2]. Gosudarstvennoe izdatel'stvo tehniko-teoreticheskoj literatury. Moscow, Leningrad: State Publishing House of technical and theoretical literature, 1947-1948, 919 p.
2. Marchenko O., Tretiak K., Kulchytskyi A., Holubinka Yu., Marchenko D., Tretiak N. Doslidzhennia hravitatsiinoho polia, topohrafii okeanu ta rukhiv zemnoi kory v rehioni Antarktyky [Research of gravitational field, ocean topography and crystal movements in the region of Antarctica]. Lviv: Lviv Polytechnic Publishing House, 2012, 308 p.
3. Meshcheryakov G. A. Teoreticheskie osnovy mate-maticheskoy kartografii [Theoretical foundations of mathematical cartography]. Moscow: Nedra, 1968, 160 p.
4. Rashevskij P. K. Rimanova geometrija i tenzornyj analiz [Riemann geometry and tensor analysis]. Moscow: Science, 1967, 667 p.
5. Sokol'nikov I. S. Tenzornyj analiz. Teorija i primenenija v geometrii i v mehanike sploshnyh sred. Per. s angl. [Tensor analysis. Theory and applications in geometry and continuum mechanics. Transl. from English]. Moscow: Science, 1971, 376 p.
6. Tadieiev O. A. Otsiniuvannia deformatsii zemnoi poverkhni z pozytsii teorii kvazikonformnykh vido-brazhen [Estimation of earth's surface deformations from the standpoint of the theory of quasiconformal mappings]. Heodeziia, kartohrafiia i aerofotoznimannia. [Geodesy, Cartography and Aerial Photography]. 2013, Vol. 78, pp. 140–145.
7. Tadieiev O. A. Problemy ta perspektyvy otsinyuvannya deformatsiynykh poliv Zemli za heodezychnymy danymy [Problems and prospects of estimating Earth deformation fields from geodetic data]. Heodeziia, kartohrafiia i aerofotoznimannia. [Geodesy, Cartography and Aerial Photography]. 2015, Vol. 82, pp. 73–94.
8. Finikov S. P. Proektivno-differencial'naja geometrija [The projective differential geometry]. Obedinennoe nauchno-tehnicheskoe izdatel'stvo Moscow, Leningrad: Joint Scientific and Technical Publishing House, 1937, 265 p.
9. Altamini Z., Collilieux X., Legrand J., Garayt B., Boucher C. ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. Journal of Geophysical Research. 2007, Vol. 112 (B9), N. B09401, 19 p. doi: 10.1029/2007JB004949
https://doi.org/10.1029/2007JB004949
10. Altamini Z., Collilieux X., Metivier L. ITRF2008: an improved solution of the international terrestrial reference frame. Journal of Geodesy. 2011, Vol. 85(8), pp. 457-473. doi 10.1007/s00190-011-0444-4
https://doi.org/10.1007/s00190-011-0444-4
11. Altamini Z., Metivier L., Collilieux X. ITRF2008 plate motion model. Journal of Geophysical Research. 2012, Vol. 117 (B7), N. B07402, 14 p. doi: 10.1029/2011JB008930
https://doi.org/10.1029/2011JB008930
12. Altamini Z., Rebischung P., Metivier L., Collilieux X. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. Journal of Geophysical Research: Solid Earth. 2016, Vol. 121 (B8), pp. 6109–6131. doi: 10.1002/2016JB013098
https://doi.org/10.1002/2016JB013098
13. Argus D. F., Gordon R. G., DeMets C. Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochemistry, Geophysics, Geosystems. 2011, Vol. 12 (11), N. Q11001, 13 p. doi: 10.1029/2011GC003751
https://doi.org/10.1029/2011GC003751
14. Argus D. F., Gordon R. G., Heflin M. B., Ma C., Eanes R., Willis P., Peltier W. R., Owen S. E. The angular velocities of the plates and the velocity of Earths centre from space geodesy. Geophysical Journal International. 2010, Vol. 180 (3), pp. 913–960. doi: 10.1111/j.1365-246X.2009.04463.x
https://doi.org/10.1111/j.1365-246X.2009.04463.x
15. DeMets C., Gordon R. G., Argus D. F. Geologically current plate motions. Geophysical Journal International. 2010, Vol. 181 (1), pp. 1–80. doi: 10.1111/j.1365-246X.2009.04491.x
https://doi.org/10.1111/j.1365-246X.2009.04491.x
16. Dermanis A. A study of the invariance of deformation parameters from a geodetic point of view. Kontadakis M.E., Kaltsikis C., Spatalas S., Tokmakidis K., Tziavos I. N. (Eds.), The apple of knowledge. Volume in honor of prof. D. Arabelos. Publication of the school of rural & surveying engineering, Aristotle University of Thessaloniki, 2010, pp. 43–66. http://der.topo.auth.gr/DERMANIS/ENGLISH/Publication_ENG.html
17. Dermanis A., Grafarend E. W. The finite element approach to the geodetic computation of two- and three-dimensional deformation parameters: a study of frame invariance and parameter estimability. Sevilla M. J., Henneberg H. (Eds.), Proceeding Int. Conference "Cartography-Geodesy", 5th Centenary of Americas: 1492-1992, Maracaibo, Venezuela, 24.11–3.12.1992. Madrid: Instituto de astronomia y geodesia, 1993, pp. 66–85.
18. Dermanis A. The evolution of geodetic methods for the determination of strain parameters for earth crust deformation. Arabelos D., Kontadakis M., Kaltsikis Ch., Spatalas S. (Eds.), Terrestrial and stellar environment. Volume in honor of prof. G. Asteriadis. Publication of the school of rural & surveying engineering, Aristotle University of Thessaloniki, 2009, pp. 107–144. http://der.topo.auth.gr/DERMANIS/ENGLISH/Publication_ENG.html
19. Ferland R., Piraszewski M. The IGS-combined station coordinates, earth rotation parameters and apparent geocenter. Journal of Geodesy. 2009, Vol. 83 (3), pp. 385–392. doi: 10.1007/s00190-008-0295-9
https://doi.org/10.1007/s00190-008-0295-9
20. Grafarend E.W., Voosoghi B. Intrinsic deformation analysis of the Earths surface based on displacement fields derived from space geodetic measurements. Case studies: present-day deformation patterns of Europe and of the Mediterranean area (ITRF data sets). Journal of Geodesy. 2003, Vol. 77 (5–6), pp. 303–326. doi: 10.1007/s00190-003-0329-2
https://doi.org/10.1007/s00190-003-0329-2
21. Hossainali M., Becker M., Groten E. Comprehensive approach to the analysis of the 3D kinematics deformation with application to the Kenai Peninsula. Journal of Geodetic Science. 2011a, Vol. 1(1), pp. 59–73. doi: 10.2478/v10156-010-0008-1
https://doi.org/10.2478/v10156-010-0008-1
22. Hossainali M., Becker M., Groten E. Procrustean statistical inference of deformation. Journal of Geodetic Science. 2011b, Vol. 1(2), pp. 170–180. doi: 10.2478/v10156-010-0020-5
https://doi.org/10.2478/v10156-010-0020-5
23. IERS Conventions (2010). Petit G., Luzum B. (Eds.), IERS Technical Note; 36. Frankfurt am Main: Verlag des Bundesamts fur Kartographie und Geodasie, 2010, 179p. http://www.iers.org/SharedDocs/Publikationen/EN/IERS/Publications/tn/Tec...
24. International Association of Geodesy. http://iag.dgfi.tum.de/fileadmin/handbook_2012/333_Commission_3.pdf
25. Kogan M. G., Steblov G. M. Current global plate kinematics from GPS (1995-2007) with the plate-consistent reference frame. Journal of Geophysical Research. 2008, Vol. 113 (B4), N. B04416, 17 p. doi: 10.1029/2007JB005353
https://doi.org/10.1029/2007JB005353
26. Vanicek P., Grafarend E., Berber M. Short note: strain invariants. Journal of Geodesy. 2008, Vol. 82, pp. 263–268. doi: 10.1007/s00190-007-0175-8
https://doi.org/10.1007/s00190-007-0175-8
27. Wu X., Collilieux X., Altamini Z., Vermeersen B. L. A., Gross R. S., Fukumori I. Accuracy of the International Terrestrial Reference Frame origin and Earth expansion. Geophysical Research Letters. 2011, Vol. 38(13), N. L13304, 5 p. doi: 10.1029/ 2011GL047450