Micro- and nanothermometers with liquid-phase sensitive elements are made on the basis of capillaries filled with liquid. Important is the kind of liquid (water, alcohol, mercury, etc.), the angle of inclination of the thermometer capillary, and its internal diameter. Currently the need for micro- and nanothermometers with low inertia and accordingly with the small diameter of the capillary is increasing, and information about their inertia, which is necessary, in particular, for medicine, becomes insufficient. The time of their thermal inertia is rather small, since the thermal equilibrium of the thermometer and the controlled object is set extremely fast. However, in reality, the movement of a liquid in a capillary of a thermometer, which determines the readout of the temperature value, due to the change in the thermodynamic conditions during the measurement, is not so rapid to satisfy the metrologists. The experience of studying the spontaneous penetration of liquids in porous micro- and nanochannels of natural structures is limited mainly by works that capture the significance of the influence of initial conditions.
The features of filling capillaries of different internal diameters at different angles of inclination are considered in this paper. It enables to work out the technology of manufacturing and application of these thermometers, and thus to predict the duration of setting the micro- and nanothermometers’ indications not limiting by thermal inertia.
For this purpose, the Washburn’s and Bosanquet equations are considered. Rate of filling the capillary is affected by fluid viscosity, surface tension, length of the filled capillary, and its diameter. Since the viscosity of the liquid increases slightly with pressure and decreases exponentially with temperature, it is inversely proportional to the rate of liquid penetration or to the rate of moving meniscus. It was analyzed the impact of these factors on the micro- and nanothermometers’ performance that promotes their efficient production and application.
[1] S. Yatsyshyn, B. Stadnyk, Ya. Lutsyk, “Research in Nanothermometry. Part 8. Summary”, Sensors & Transducers, vol. 144, iss. 9, p. 1-15, 2012.
[2] P. Skoropad, B. Stadnyk, S. Yatsyshyn, H. Pol’ova, “Development of Noise Measurements, Part 7. Coriolis Mass Flowmeter and its Errors”, Sensors & Transducers, vol. 158, iss. 11, p. 249-254, 2013.
[3] B. Stadnyk, S. Yatsyshyn, O. Kozak, “Research in Nanothermometry. Part 2. Methodical Error Problem of Contact Thermometry”, Sensors & Transducers, vol. 140, iss. 5, p. 8-14, 2012.
[4] S. Yatsyshyn, B. Stadnyk, R. Samchenko, “CNT nanosensors in the tumors treatment”, Int. J. Biosen. Bioelectron., vol. 2, iss. 6, p. 188-189, 2017.
[5] X. Yang, Z. Zhou, F. Zheng et al, “High sensitivity temperature sensor based on a long, suspended single-walled carbon nanotube array”, Micro & Nano letters, IET, vol. 5, iss. 2, p. 157-161, 2010.
[6] S.Yatsyshyn, B. Stadnyk, Ya. Lutsyk, “Research in Nanothermometry. Part 3. Characteristics of the Thermometers with liquid- and solid-phase sensitive elements”, Sensors & Transducers, vol. 140, iss. 5, p. 15-23, 2012.
[7] G. Khaidarov, A. Khaidarov, A. Mashek, “The physical nature of liquid surface tension”, vestnik St.Petersburg Un., ser.4: Physics and Chemistry, iss. 1, p. 3-8, 2011.
[8] http://www.ppsi.ethz.ch/fmi/xsl/eqi/eqi_property_ details_en.xsl?node_id=1113
[9] Powering nanotechnology devices with novel surface energy generators, Nanowerk Nanotechn. Spotlight, March 5, 2010.
[10] E. Washburn, The Dynamics of Capillary Flow, Phys. Rev., vol. 17 (3), 273, 1921.
[11] H. Akima, "A new method of interpolation and smooth curve fitting based on local procedures", Journ Ass. Comp. Mach., vol. 17, no. 4, p. 589–602, 1970.