A SCALABLE WEB-BASED TOOL FOR WIND AND SOLAR ENERGY POTENTIAL ASSESSMENT AND GENERATION FORECASTING

1
General Energy Institute of the National Academy of Sciences of Ukraine
2
General Energy Institute of National Academy of Sciences of Ukraine

Ukraine’s energy sector is undergoing rapid transformation due to both the need to restore generation capacity following large-scale infrastructure damage and the accelerated transition to renewable energy sources (RES). Accurate forecasting of electricity production from solar and wind power plants is a key factor for balancing the energy system and reducing investment risks associated with the development of distributed generation. This paper presents GreenPowerAtlas — a software-information platform that integrates long-term satellite climatic datasets from NASA POWER with short-term weather forecasts from Open Meteo. The system implements advanced forecasting algorithms, including statistical models (ARIMA), neural networks (LSTM), and stochastic wind speed distributions (Weibull, Gamma). This ensures both long-term potential assessment and short-term generation forecasting. The architecture of GreenPowerAtlas provides scalability, high performance, and secure user access, while interactive visualization tools support decision-making for investors, engineers, and energy network operators. The platform has been successfully tested on real projects in Ukraine, particularly in assessing the solar energy potential of the Novyi Rozdil Industrial Park, confirming its practical value and readiness for large-scale implementation.

  1. What will Ukraine’s electricity mix look like: a forecast to 2030.            [Online]. Available: https://enerhodzherela.com.ua/analityka/Yakym_bude_ukra yinskyy_elektroenerhetychnyy_miks .
  2. Zaporozhets, A.O. (2021). Correlation analysis between the components of energy balance and pollutant emissions. Water, Air, & Soil Pollution, 232, 1−22. https://doi.org/10.1007/s11270-021-05048-9
  3. Komar, V.O., & Semenyuk, Yu.V. (2022, May 31−June 1). Analysis of existing models for forecasting solar insolation, comparing forecasted values with actual insolation values for specific days. LI Scientific and Technical Conference of the Faculty of Electrical Power Engineering and Electromechanics. Vinnytsia National Technical University. Retrieved August 5, 2024 [Online]. Available: https://ir.lib.vntu.edu.ua/bitstream/handle/123456789/40275/ 15939.pdf?sequence=3&isAllowed=y.
  4. Rodrigues, G. C., & Braga, R. P. (2021). Evaluation of NASA POWER reanalysis products to estimate daily weather variables in a hot summer Mediterranean climate. Agronomy, 11(6), 1207.
  5. Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-K. … Zhao, B. (2017). The modern- era retrospective analysis for research and applications, version 2 (MERRA-2). Journal of Climate, 30(14), 5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1
  6. MacLachlan, C., Arribas, A., Peterson, K. A., Maidens, A., Fereday, D., Scaife, A. A., Gordon, M., Vellinga, M., Williams, A., Comer, R. E., Camp, J., Xavier, P., & Madec, G. (2015). Global Seasonal Forecast System version 5 (GloSea5): A high‐ resolution seasonal forecast system. Quarterly Journal of the Royal Meteorological Society, 141(689), 1072–1084. https://doi.org/10.1002/qj.2396
  7. Shulzhenko, S., Nechaieva, T., & Leshchenko, I. (2024). The application of the optimal unit commitment problem for the studies of the national power sector development under system risks. In A. Zagorodny, V. Bogdanov, A. Zaporozhets (Eds.), Nexus of Sustainability. Studies in Systems, Decision and Control, 559 (pp. 147−164). Springer, Cham. https://doi.org/10.1007/978-3-031-66764-0_7
  8. Satoh, M., Tomita, H., Yashiro, H., Miura, H., Kodama, Ch., Seiki, T., Noda, A. T., Yamada, Y., Goto, D., Sawada, M., Miyoshi, T., Niwa, Y., Hara, M., Ohno, T., Iga, Sh., Arakawa, T., Inoue, T., & Kubokawa, H. (2014). The non-hydrostatic icosahedral atmospheric model: Description and development. Progress in Earth and Planetary Science, 1(18), 1–32. https://doi.org/10.1186/s40645-014-0018-1
  9. Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Yu.V., Myslovych, M.V., Scherbak, L.M., & Zaporozhets, A.O. (2021). Problems and Features of Measurements. Models and Measures in Measurements and Monitoring. Studies in Systems, Decision and Control, 360 (pp. 1−31). Springer, Cham. https://doi.org/10.1007/978-3-030-70783-5_1
  10. Wang K., Qi X., Liu H. Photovoltaic power forecasting based on LSTM-Convolutional Network. Energy. 2019. 189:116225. https://doi.org/10.1016/j.energy.2019.116225.
  11. Liu X., Lin Z., Feng Z. Short-term offshore wind speed forecast by seasonal ARIMA — a comparison against GRU and LSTM. Renewable Energy. 2021. 164: 598–609. https://doi.org/10.1016/j.renene.2020.10.119.
  12. van der Meer D.W., Widén J., Munkhammar J. Review on probabilistic forecasting of photovoltaic power production and electricity consumption. Renewable and Sustainable Energy Reviews. 2018. 81: 1484–1512. https://doi.org/10.1016/j.rser.2017.05.212.
  13. Kumari P., Toshniwal D. Deep learning models for solar irradiance forecasting: A comprehensive review. Journal of Cleaner   Production.   2021.   318:   128566.https://doi.org/10.1016/j.jclepro.2021.128566.
  14. Yang D., Alessandrini S., Antonanzas J. Automatic hourly solar forecasting using machine learning models. Renewable and Sustainable Energy Reviews. 2019. 105: 487–498. https://doi.org/10.1016/j.rser.2019.02.006.
  15. Hong T., Pinson P., Wang Y., Weron R., Yang D., Zareipour H. Energy Forecasting: A Review and Outlook. IEEE Open Access Journal of Power and Energy      2020. 7: 376–388.https://doi.org/10.1109/OAJPE.2020.3029979.
  16. Marinho F.P., Rocha P.A.C., Sousa R.C., Feitosa E.A.N. Short-Term Solar Irradiance Forecasting Using CNN-1D, LSTM, and CNN-LSTM. Journal of Solar Energy Engineering.                     2022.       145(4):    041002. https://doi.org/10.1115/1.4056122.
  17. Zhang T., Stackhouse P.W., Macpherson B., Mikovitz J.C. POWER Release 8: NASA global meteorology and surface solar energy dataset. Earth System Science Data. 2018. 10: 583–593.       https://doi.org/10.5194/essd-10-583-2018. power.larc.nasa.gov
  18. Sparks A.H., Moraga P., Dahinden F. nasapower: A NASA POWER Data Client for R. Journal of Open Source Software. 2018. 3(30): 1035. https://doi.org/10.21105/joss.01035.
  19. Voyant C., Notton G., Kalogirou S.A. Machine learning methods for solar radiation forecasting: A review. Renewable Energy.                             2017.                 105:                 569–82.https://doi.org/10.1016/j.renene.2016.12.095.
  20. Scolari E., De Falco P., Guala A., Manzoni A., Quarteroni A. Short-term wind power forecasting via long short-term memory networks and in-situ measurements. Applied Energy.            2021.       293:         116918. https://doi.org/10.1016/j.apenergy.2021.116918.
  21. Yang D., Perez R., Bosse S., Badescu V., Remund J. Forecasting solar irradiance and photovoltaic power. Solar Energy.  2020.       207:                             565–612. https://doi.org/10.1016/j.solener.2020.06.097.
  22. Huertas-Tato J., Grela J., Manso P., Jiménez-Cano A., Sainz R. Short-term PV power forecasting based on numerical weather predictions by LSTM. Renewable Energy 2021. 170: 1036–1048. https://doi.org/10.1016/j.renene. 2021.02.086