Phosphorylated Zeolite-A/Chitosan Composites as Proton Exchange Membrane Fuel Cell

2018;
: pp.229-235
1
Faculty of Science and Technology, Universitas Airlangga
2
Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga
3
Faculty of Science and Technology, Universitas Airlangga

Phosphorylated zeolite-A/chitosan composites were prepared and characterized as an alternative material for proton exchange membrane fuel cell (PEMFC). Their applicability was demonstrated by mechanical properties, swelling property, proton conductivity, methanol permeability, and thermal resistance. Chitosan was prepared from shrimp shell waste by deproteination, demineralization, and deacetylation. Chitosan was modified using zeolite A in the various concentrations. Chitosan membrane hybrid zeolite A was further modified using sodium triphosphate (STPP) as phosphorylation and glutaraldehyde as a cross linker. The SEM results showed that the membrane had rigid pores. Moreover, this research stated that phosphorylated zeolite-A/chitosan hybrid composite as an electrolyte membrane with modified natural polymers could be a solution of environmental and economical fuel cell.

[1] Kilner J., Skinner S., Irvine C., Edwards P.: Functional Materials for Sustainable Energy Applications. Woodhead Publishing, Cambridge 2012.
https://doi.org/10.1533/9780857096371

[2] Scherer G.: Advances in Polymer Science. Springer, Verlag Berlin Heidelberg 2008.

[3] Cheng X., Zhang J., Tang Y. et al.: J. Power Sources, 2008, 167, 25. https://doi.org/10.1016/j.jpowsour.2007.02.027
https://doi.org/10.1016/j.jpowsour.2007.02.027

[4] Zeis R.: Beilstein J. Nanotechnol., 2015, 6, 68. https://doi.org/10.3762/bjnano.6.8.
https://doi.org/10.3762/bjnano.6.8

[5] Myles T., Kimia S., Maric R., Mustain W.: Catalysts, 2015, 5, 1673. https://doi.org/10.3390/catal5041673
https://doi.org/10.3390/catal5041673

[6] Se-Kwon K.: Chitin, Chitosan, Oligosaccharides and Their Derivatives, CRC Press, London New York 2010.

[7] Xiang Y., Yang M., Guo Z. et al.: J. Membrane Sci., 2009, 337, 318. https://doi.org/10.1016/j.memsci.2009.04.006
https://doi.org/10.1016/j.memsci.2009.04.006

[8] Cao L., Shen X., Yang B. et al.: RSC Adv., 2016, 6, 68407. https://doi.org/10.1039/C6RA09291H
https://doi.org/10.1039/C6RA09291H

[9] Ghufira Y., Angasa E., Ariesta J.: Aceh Int. J. Sci. Technol., 2012, 1, 26.

[10] Laomongkonnimit P., Soontarapa K.: Proceed. fourth Thailand Materials Science and Technlogy Conf., Khlong Luang, Thailand, 2006, 266.

[11] Pera-Titus M., Mallada R., Liorens J. et al.: J. Membr. Sci. 2008, 278, 401. https://doi.org/10.1016/j.memsci.2005.11.026
https://doi.org/10.1016/j.memsci.2005.11.026

[12] Wilkinson D., Zhang J., Hui R. et al.: Proton Exchange Membrane Fuel Cells: Materials Properties and Performance, CRC Press, London NY 2009.

[13] Vijayalekshmi V., Khastgir D.: J. Membrane. Sci., 2017, 523, 45. https://doi.org/10.1016/j.memsci.2016.09.058
https://doi.org/10.1016/j.memsci.2016.09.058

[14] Yunizal N., Murdinah T.: In. Agritech. 2001, 21, 113.

[15] Khan T., Peh K., Ching H.: J. Pharm. Pharm. Sci., 2002, 5, 3, 205.

[16] Pavia D., Lampman G., Kriz G.: Introduction to Spectroscopy. West. Washington Univ., Washington 2001.

[17] Khor E.: Chitin. Nat. Univ. of Singapore, Singapore 2001.

[18] Li B., Shan C.-L., Zhou Q. et al.: Mar. Drugs, 2013, 11, 1534. https://doi.org/10.3390/md11051534.
https://doi.org/10.3390/md11051534

[19] Ma J., Sahai Y.: ECS Transactions, 2012, 42, 101. https://doi.org/10.1149/1.4705485
https://doi.org/10.1149/1.4705485

[20] Shweta A., Sonia P.: Int. Res. J. Pharmacy, 2013, 4, 45.

[21] Kunjachan S., Jose S., Lammers T.: Asian J. Pharmac., 2010, 4, 148.
https://doi.org/10.4103/0973-8398.68467

[22] Wang Y., Yang D., Zheng X. et al.: J. Power Sources, 2008, 183, 454. https://doi.org/10.1016/j.jpowsour.2008.06.003
https://doi.org/10.1016/j.jpowsour.2008.06.003