Hybrids of Cellulose-TiO2 for Environmental Application

2020;
: pp. 93 - 101
1
Nanotecnologia, Universidade Federal do Rio de Janeiro, Brazil 2 Instituto de Macromoléculas Professora Eloísa Mano, Universidade Federal do Rio de Janeiro (IMA/UFRJ). Centro de Tecnologia
2
Nanotecnologia, Universidade Federal do Rio de Janeiro, Brazil
3
Instituto de Macromoléculas Professora Eloísa Mano, Universidade Federal do Rio de Janeiro (IMA/UFRJ). Centro de Tecnologia

This work is based on the combination of the acid treated-cellulose and chemically adsorbed titanium(IV) oxide on its surface to obtain a hybrid material for application in water treatment to degrade organic compounds. The photocatalytic property was evaluated in the degradation of the methyl orange dye. The photodegradation activity was higher using the hybrid obtained from the cellulose whose hydrolysis was conducted at higher acid concentration, which resulted in smaller fiber diameter, as suggested by scanning electron microscopy. Thermogravimetric analysis and X-ray diffraction confirmed that this hybrid has lower thermal degradation temperature and the size of the cellulose nanocrystals is lower in the more hydrolyzed sample. This allowed the increase of surface area and therefore, the fixation of more nanoparticles of TiO2, which is responsible for the photodegradation activity, observed by the bleaching of a dye solution.

  1. Moreira L., Leonel F., Vieira R., Pereira J.: Rev. Bras. Saúde Prod. Anim., 2013, 14, 382.
  2. Solfa M., Brown R., Tsuzuki T., Rainey T.: Adv. Nat. Sci.: Nanosci. Nanotechnol., 2016, 7, 035004.
  3. George J., Sabapathi S.: Nanotechnol. Sci. Appl., 2015, 8, 45. https://doi.org/10.2147/NSA.S64386
  4. Qiu X., Shuwen H.: Materials, 2013, 6, 738. https://doi.org/10.3390/ma6030738
  5. Morawski A., Kusiak-Nejman E., Przepiórski J. et al.: Cellulose, 2013, 20, 1293. https://doi.org/10.1007/s10570-013-9906-6
  6. Postek M., Vladár A., Dagata J. et al.: Meas. Sci. Technol., 2010, 22, 024005. https://doi.org/10.1088/0957-0233/22/2/024005
  7. Habibi Y.: Chem. Soc. Rev., 2014, 43, 1519. https://doi.org/10.1039/C3CS60204D
  8. Wesarg F., Schlott F., Grabow J. et al.: Langmuir, 2012, 28, 13518. https://doi.org/10.1021/la302787z
  9. Espinosa S., Kuhnt T., Foster E., Weder C.: Biomacromolecules, 2013, 14, 1223. https://doi.org/10.1021/bm400219u
  10. Filpponen E.: PhD thesis, North Caroline State University 2009.
  11. Shon H., Phuntsho S., Okour Y. et al.: J. Korean Ind. Eng. Chem., 2008, 19, 1.
  12. Ismagilov Z., Shikina N., Mazurkova N. et al.: Sci. World J., 2012, 2012, 498345. https://doi.org/10.1100/2012/498345
  13. Li G., Nandgaonkar A., Wang Q. et al.: J. Membrane Sci., 2017, 525, 89. https://doi.org/10.1016/j.memsci.2016.10.033
  14. Gurr J.-R., Wang A., Chen C.-H., Jan K.-Y.: Toxicology, 2005, 213, 66. https://doi.org/10.1016/j.tox.2005.05.007
  15. Zywitzki D., Jing H., Tuysuz H., Chan C.: J. Mater. Chem. A, 2017, 5, 10957. https://doi.org/10.1039/C7TA01614J
  16. Schütz C., Sort J., Bacsik Z. et al.: PLoS ONE, 2012, 7, e45828. https://doi.org/10.1371/journal.pone.0045828
  17. Habibi Y., Lucia L., Rojas O.: Chem. Rev., 2010, 110, 3479. https://doi.org/10.1021/cr900339w
  18. Svagan A., Hedenqvist M., Berglund L.: Compos. Sci. Technol., 2009, 69, 500. https://doi.org/10.1016/j.compscitech.2008.11.016
  19. Bardet R., Belgacem M.: Cellulose, 2013, 20, 3025. https://doi.org/10.1007/s10570-013-0025-1
  20. Eichhorn S.: Soft Matter., 2011, 7, 303. https://doi.org/10.1039/C0SM00142B
  21. Fan M., Dai D., Huang B.: Fourier Transform Infrared Spectroscopy for Natural Fibres [in:] Salih S. Fourier Transform – Materials Analysis. InTechOpen 2012, 45-68. https://doi.org/10.5772/35482
  22. Lee K-Y., Aitomäki Y., Berglund L. et al.: Compos. Sci. Technol., 2014, 105, 15. https://doi.org/10.1016/j.compscitech.2014.08.032
  23. Senić Z., Bauk S., Vitorović-Todorović M. et al.: Sci. Techn. Rev., 2011, 61, 63.
  24. Baltazar P., Lara V., Cordoba G., Arroyo R.: J. Sol-Gel Sci. Technol., 2006, 37, 129. https://doi.org/10.1007/s10971-006-6432-0
  25. Lu J., Wang T., Drzal L.: Compos. Part A-Appl. S., 2008, 39, 738. https://doi.org/10.1016/j.compositesa.2008.02.003
  26. Wei L., Agarwal U.., Hirth K. et al.: Carbohydrate Polym., 2017, 169, 108. https://doi.org/10.1016/j.carbpol.2017.04.008
  27. Park S., Baker J., Himmel M. et al.: Biotechnol. Biofuels, 2010, 3, 1. https://doi.org/10.1186/1754-6834-3-10
  28. Cunha A., Freire C., Silvestre A. et al.: J. Colloid Interf. Sci., 2007, 316, 360. https://doi.org/10.1016/j.jcis.2007.09.002
  29. Thamaphat K., Limsuwan P., Ngotawornchai B.: Kasetsart J. (Nat. Sci.), 2008, 42, 357.
  30. Niu P.: Asian J. Chem., 2013, 25, 1103. https://doi.org/10.14233/ajchem.2013.13539