Clay-Sand Wettability Evaluation for Heavy Crude Oil Mobility

2022;
: pp. 448 - 453
1
Instituto Politécnico Nacional Av. Miguel Bernard S/N, FADU - Universidad Autónoma de Tamaulipas Circuito Universitario S/N
2
FADU - Universidad Autónoma de Tamaulipas Circuito Universitario S/N
3
FADU - Universidad Autónoma de Tamaulipas Circuito Universitario S/N
4
Universidad Nacional Autónoma de México Circuito Interior S/N
5
Universidad Nacional Autónoma de México Circuito Interior S/N

In this work, the effect of distilled water, a biodiesel viscosity reducer, and a commercial nonionic surfactant on the apparent permeability of clay-sand cores through the analysis of contact angle, linear swelling, and porous media fluid flow for a northern Mexico crude oil was evaluated. The results showed that the clay content influences the contact angle values having a lower wettability effect in the rocky medium. The addition of biodiesel produces a fluid movement similar to the addition of distilled water. Biodiesel-based flow enhancer not only reduces the crude oil viscosity but also improves the flowability through porous media. However, this behavior is only valid if the soil is not saturated with salty water.

[1] Lajous, A. Declinación y Destino de las Exportaciones de Petróleo Crudo Mexicano. Foro Int. 2019, 59, 189-259. https://doi.org/10.24201/fi.v59i1.2585
[2] Gutiérrez, R.; Vergara González, R.; Díaz Carreño, M. Predicción de la volatilidad en el Mercado del Petróleo Mexicano ante la Presencia de Efectos Asimétricos. Cuad. Econ. (Spain) 2015, 34, 299. https://doi.org/10.15446/cuad.econ.v34n65.48702
[3] http://sih.hidrocarburos.gob.mx/
[4] Suárez-Domínguez, E.-J.; Manuel-Rivera, R., Coronel-Santillán, A.-U.; Palacio‐Pérez, A.; Izquierdo‐Kulich, E. Estudio de Coeficientes Reológicos de un Crudo Extrapesado Mezclado con un Biorreductor de Viscosidad. Ingeniería Mecánica 2015, 18, 87-92.
[5] Santos, I.C.V.M.; Oliveira, P.F.; Mansur, C.R.E. Factors that Affect Crude Oil Viscosity and Techniques to Reduce it: A Review. Braz. J. Petrol. Gas 2017, 11, 115-130. https://doi.org/10.5419/bjpg2017-0010
[6] Speight, J.G. The Chemistry and Technology of Petroleum; CRC Press: Boca Raton, 2014. https://doi.org/10.1201/b16559
[7] Zhang, F.; Shan, D.; Liu, G.; Li, X.; Sun, J. Overview of Flow Improvers for Crude Oil Production in China. Earth Environ. Sci. 2020, 453, 012037. https://doi.org/10.1088/1755-1315/453/1/012037
[8] Yang, Y.; Guo, J.; Cheng, Z.; Wu, W.; Zhang, Jianjun; Zhang, Jiangwei; Yang, Z.; Zhang, D. New Composite Viscosity Reducer with Both Asphaltene Dispersion and Emulsifying Capability for Heavy and Ultraheavy Crude Oils. Energ. Fuel. 2017, 31, 1159-1173. https://doi.org/10.1021/acs.energyfuels.6b02265
[9] Li, X.; Shi, L.; Li, H.; Liu, P,; Luo, J.; Yuan, Z. Experimental Study on Viscosity Reducers for SAGD in Developing Extra-Heavy Oil Reservoirs. J. Petrol. Sci. Eng. 2018, 166, 25-32. https://doi.org/10.1016/j.petrol.2018.03.022
[10] Negi, H.; Faujdar, E.; Saleheen, R.; Singh, R.K. Viscosity Modification of Heavy Crude Oil by Using a Chitosan-Based Cationic Surfactant. Energ. Fuel. 2020, 34, 4474-4483. https://doi.org/10.1021/acs.energyfuels.0c00296
[11] Perez-Sanchez, J.F.; Gallegos-Villella, R.R.; Gomez-Espinoza, J., Suarez-Dominguez, E.J. Determining the Effect of a Viscosity Reducer on Water - Heavy Crude Oil Emulsions. IJEAT 2019, 8, 844-848.
[12] Li, W.; Zhao, X.; Ji, Y.; Peng, H.; Li, Y.; Liu, L.; Han, X. An Investigation on Environmentally Friendly Biodiesel-Based Invert Emulsion Drilling Fluid. J. Pet. Explor. Prod. Technol. 2016, 6, 505-517. https://doi.org/10.1007/s13202-015-0205-7
[13] Li, W.; Zhao, X.; Ji, Y.; Peng, H.; Chen, B.; Liu, L.; Han, X. Investigation of Biodiesel-Based Drilling Fluid, Part 1: Biodiesel Evaluation, Invert-Emulsion Properties, and Development of a Novel Emulsifier Package. SPE J. 2016, 21, 1755-1766. https://doi.org/10.2118/180918-PA
[14] dos Santos, W.R.; Caser, E.S.; Soares, E.J.; Siqueira, R.N. Drag Reduction in Turbulent Flows by Diutan Gum: A Very Stable Natural Drag Reducer. J. NonNewton. Fluid. Mech. 2020, 276, 104223. https://doi.org/10.1016/j.jnnfm.2019.104223
[15] Bello, E.I.; Adekanbi, I.T.; Akinbode, F.O. Production and Characterization of Coconut (Cocus Nucifera) Oil and its Methyl Ester. Eur. J. Pure Appl. Chem. 2016, 3, 38.
[16] Brame, S.D.; Li, L.; Mukherjee, B.; Patil, P.D.; Potisek, S.; Nguyen, Q.P. Organic Bases as Additives for Steam-Assisted Gravity Drainage. Petrol. Sci. 2019, 16, 1332-1343. https://doi.org/10.1007/s12182-019-0341-7
[17] Xiao, S.; Zeng, Y.; Vavra, E.D.; He, P.; Puerto, M.; Hirasaki, G.J.; Biswal, S.L. Destabilization, Propagation, and Generation of Surfactant-Stabilized Foam during Crude Oil Displacement in Heterogeneous Model Porous Media. Langmuir 2018, 34, 739-749. https://doi.org/10.1021/acs.langmuir.7b02766
[18] Umar, A.A.; Saaid, I.B.M.; Sulaimon, A.A.; Pilus, R.B.M. A Review of Petroleum Emulsions and Recent Progress on Water-In-Crude Oil Emulsions Stabilized by Natural Surfactants and Solids. J. Petrol. Sci. Eng. 2018, 165, 673-690. https://doi.org/10.1016/j.petrol.2018.03.014
[19] Abraham, D.V.; Orodu, O.D.; Efeovbokhan, V.E.; Olabode, O.; Ojo, T.I. The Influence of Surfactant Concentration and Surfactant Type on the Interfacial Tension of Heavy Crude Oil/Brine/Surfactant System. Pet. Coal 2020, 62, 292-298.
[20] Hamouda, A.A.; Gupta, S. Enhancing Oil Recovery from Chalk Reservoirs by a Low-Salinity Water Flooding Mechanism and Fluid/Rock Interaction. Energies 2017, 10, 576-592. https://doi.org/10.3390/en10040576
[21] Liu, Y.; Hu, W.; Cao, J.; Wang, X.; Zhu, F.; Tang, Q.; Gao, W. Fluid-Rock Interaction and its Effects on the Upper Triassic Tight Sandstones in the Sichuan Basin, China: Insights from Petrographic and Geochemical Study of Carbonate Cements. Sediment. Geol. 2019, 383, 121-135. https://doi.org/10.1016/j.sedgeo.2019.01.012
[22] Mehraban, M.F.; Afzali, S.; Ahmadi, Z.; Mokhtari, R.; Ayatollahi, S.; Sharifi, M.; Kazemi, A.; Nasiri,M.; Fathollahi, S. Conference Proceedings, 19th European Symposium on Improved Oil Recovery, Stavanger, Norway, April 24-27, 2017; European Association of Geoscientists & Engineers: Stavanger, 2017; 1. https://doi.org/10.3997/2214-4609.201700311
[23] Chen, Y.; Xie, Q.; Sari, A.; Brady, P.V.; Saeedi, A. Oil/Water/Rock Wettability: Influencing Factors and Implications for Low Salinity Water Flooding in Carbonate Reservoirs. Fuel 2018, 215, 171-177. https://doi.org/10.1016/j.fuel.2017.10.031
[24] Huhtamäki, T.; Tian, X.; Korhonen, J.T.; Ras, R.H.A. Surface-Wetting Characterization Using Contact-Angle Measurements. Nature protocols 2018, 13, 1521-1538. https://doi.org/10.1038/s41596-018-0003-z
[25] Yuan, Y.; Lee, T. R. Contact Angle and Wetting Properties. In Surface Science Techniques; Bracco, G.; Holst B., Eds.; Springer Series in Surface Sciences; Springer: Berlin, Heidelberg, 2013; pp 3-34. https://doi.org/10.1007/978-3-642-34243-1_1
[26] Jing, J.; Yin, R.; Zhu, G.; Xue, J.; Wang, S.; Wang, S. Viscosity and Contact Angle Prediction of Low Water-Containing Heavy Crude Oil Diluted with Light Oil. J. Petrol. Sci. Eng. 2019, 176, 1121-1134. https://doi.org/10.1016/j.petrol.2019.02.012
[27] Suárez-Domínguez, E.J.; Pérez-Sánchez, J.F.; Palacio-Pérez, A.; Rodríguez-Valdes, A.; Izquierdo-Kulich, E.; González-Santana, S. A Viscosity Bio-Reducer for Extra-Heavy Crude Oil. Petrol. Sci. Technol. 2018, 36, 166-172. https://doi.org/10.1080/10916466.2017.1413387
[28] Perez-Sanchez, J.F.; Diaz-Zavala, N.P.; Gonzalez-Santana, S.; Izquierdo-Kulich, E.F.; Suarez-Dominguez, E.J. Water-In-Oil Emulsions through Porous Media and the Effect of Surfactants: Theoretical Approaches. Processes 2019, 7, 620. https://doi.org/10.3390/pr7090620
[29] Suarez-Dominguez, E.J.; Perez-Sanchez, J.F.; Palacio-Perez A.; Izquierdo-Kulich, E.; Gonzalez-Santana, S. Flow Enhancer Influence on Non-Isothermal Systems for Heavy Crude Oil Production. Acta Universitaria [Online] 2020, 30, e2645. https://doi.org/10.15174/au.2020.2645 (accessed May 21, 2020)
[30] Perez-Sanchez, J.F.; Palacio-Perez, A.; Suarez-Dominguez, E.J.; Diaz-Zavala, N.P.; Izquierdo-Kulich, E. Evaluation of Surface Tension Modifiers for Crude Oil Transport Through Porous Media. J. Petrol. Sci. Eng. 2020, 192, 107319. https://doi.org/10.1016/j.petrol.2020.107319
[31] Luque, M.M.; Urban-Rascon, E.; Aguilera, R.F.; Aguilera, R. Mexican Unconventional Plays: Geoscience, Endowment, and Economic Considerations. SPE Reserv. Evaluation Eng. 2018, 21, 533-549. https://doi.org/10.2118/189438-PA
[32] Centro Nacional de Información de Hidrocarburos. Atlas Geológico Cuenca Tampico-Misantla. Centro Nacional de Información de Hidrocarburos, 2017. https://hidrocarburos.gob.mx/media/3091/atlas_geologico_cuenca_tampico-m... (accessed Oct 21, 2021)
[33] Chen, Z.; Zhang, Z.; Liu, D.; Chi, X.; Chen, W.; Chi, R. Swelling of Clay Minerals During the Leaching Process of Weathered Crust Elution-Deposited Rare Earth Ores by Magnesium Salts. Powder Technol. 2020, 367, 889-900. https://doi.org/10.1016/j.powtec.2020.04.008
[34] Wang, Y.-L.; Yan Q.-B.; Guo Z.; Guo, G.; Deng, Q.; Zhang, J.; Chen, J. Investigation of Oleate-Diethylamine-Epichlorohydrin Copolymer as a Clay Swelling Inhibitor for Shale Oil/Gas Exploration. Petrol. Chem. 2018, 58, 245-249. https://doi.org/10.1134/S0965544118030167
[35] Mathias, S.A.; Greenwell, H.C.; Withers, C.; Erdogan, A.R.; McElwaine, J.N.; MacMinn, C. Analytical Solution for Clay Plug Swelling Experiments. Appl. Clay Sci. 2017, 149, 75-78. https://doi.org/10.1016/j.clay.2017.07.021
[36] RezaeiDoust, A.; Puntervold, T.; Austad, T. Chemical Verification of the EOR Mechanism by Using Low Saline/Smart Water in Sandstone. Energy Fuels 2011, 25, 2151-2162. https://doi.org/10.1021/ef200215y