Nucleotide Interaction with Nanocrystalline Ceria Surface

: pp. 581 - 590
Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine
Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine

The adsorption of nucleotides on the surface of nanocrystalline cerium dioxide (pHpzc = 6.3) in NaCl solutions was investigated using multi-batch adsorption experiments over a wide range of pH. The obtained results were interpreted as a formation of outer and inner sphere surface complexes with the participation of phosphate moieties. The Basic Stern surface complexation model was applied to obtain quantitative equilibrium reaction constants.

[1] Nel, A.E.; Madler, L.; Velegol, D.; Xia, T.; Hoek, E.M.V.; Somasundaran, P.; Klaessig, F.; Vince Castranova, V.; Thompson, M. Understanding Biophysicochemical Interactions at the Nano–Bio Interface. Nat. Mater. 2009, 8, 543-557.
[2] Vallee, A.; Humblot, V.; Pradier, C.-M. Peptide Interactions with Metal and Oxide Surfaces. Acc. Chem. Res. 2010, 43 (10), 1297-1306.
[3] Stark, W.J. Nanoparticles in Biological Systems. Angew. Chem. Int. Ed. 2011, 50 (6), 1242-1258.
[4] Shemetov, A.; Nabiev, I.; Sukhanova, A. Molecular Interaction of Proteins and Peptides with Nanoparticles. ACS Nano 2012, 6 (6), 4585-4602.
[5] Huang, R.; Lau, B.L.T. Biomolecule–Nanoparticle Interactions: Elucidation of the Thermodynamics by Isothermal Titration Calorimetry. Biochim. Biophys. Acta Gen. Subj. 2016, 1860 (5), 945-956.
[6] Gunnarsson, S.B.; Bernfur, K.; Mikkelsen, A.; Cedervall, T. Analysis of Nanoparticle Biomolecule Complexes. Nanoscale 2018, 10, 4246-4257.
[7] Xu, C.; Qu, X. Cerium Oxide Nanoparticle: A Remarkably Versatile Rare Earth Nanomaterial for Biological Applications. NPG Asia Mater. 2014, 6, e90.
[8] Shcherbakov, A.B.; Zholobak, N.M.; Ivanov, V.K. Biological, Biomedical and Pharmaceutical Applications of Cerium Oxide. In Cerium Oxide (CeO2): Synthesis, Properties and Applications; Scire, S.; Palmisano L., Eds.; Elsevier, 2019; pp 279-358.
[9] Asati, A.; Santra, S.; Kaittanis, C.; Nath, S.; Perez, J.M. Oxidase-Like Activity of Polymer-Coated Cerium Oxide Nanoparticles. Angew. Chem Int. Ed. 2009, 121, 2344-2348.
[10] Li, X.; Sun, L.; Ge, A.; Guo, Y. Enhanced Chemiluminescence Detection of Thrombin Based on Cerium Oxide Nanoparticles. Chem. Comm. 2011, 47, 947-949.
[11] Kaittanis, C.; Santra, S.; Asati, A.; Perez, J.M. A Cerium Oxide Nanoparticle-Based Device for the Detection of Chronic Inflammation via Optical and Magnetic Resonance Imaging. Nanoscale 2012, 4, 2117-2123.
[12] Ornatska, M.; Sharpe, E.; Andreescu, D.; Andreescu, S. Paper Bioassay Based on Ceria Nanoparticles as Colorimetric Probes. Anal. Chem. 2011, 83 (11), 4273-4280.
[13] Xu, C.; Lin, Y.; Wang, J.; Wu, L.; Wei, W.; Ren, J.; Qu, X. Nanoceria-Triggered Synergetic Drug Release Based on CeO2-Capped Mesoporous Silica Host–Guest Interactions and Switchable Enzymatic Activity and Cellular Effects of CeO2. Adv. Healthc. Mater. 2013, 2 (12), 1591-1599.
[14] Li, M.; Shi, P.; Xu, C.; Ren, J.; Qu, X. Cerium Oxide Caged Metal Chelator: Anti-Aggregation and Anti-Oxidation Integrated H2O2-Responsive Controlled Drug Release for Potential Alzheimer’s Disease Treatment. Chem. Sci. 2013, 4, 2536-2542.
[15] Karakoti, A. S.; Tsigkou, O.; Yue, S.; Lee, P.D.; Stevens, M.M.; Jones, J.R.; Seal, S. Rare Earth Oxides as Nanoadditives in 3-D Nanocomposite Scaffolds for Bone Regeneration. J. Mater. Chem. 2010, 20, 8912-8919.
[16] Mandoli, C.; Pagliari, F.; Pagliari, S.; Forte, G.; Di Nardo, P.; Licoccia, S.; Traversa, E. Stem Cell Aligned Growth Induced by CeO2 Nanoparticles in PLGA Scaffolds with Improved Bioactivity for Regenerative Medicine. Adv. Funct. Mater. 2010, 20 (10), 1617-1624.
[17] Pautler, R.; Kelly, E.Y.; Huang, P.-J. J.; Cao, J.; Liu, B.; Liu, J. Attaching DNA to Nanoceria: Regulating Oxidase Activity and Fluorescence Quenching. ACS Appl. Mater. Interfaces 2013, 5 (15), 6820-6825.
[18] Liu, B.; Sun, Z.; Huang, P.-J.J.; Liu, J. Hydrogen Peroxide Displacing DNA from Nanoceria: Mechanism and Detection of Glucose in Serum. J. Am. Chem. Soc. 2015, 137 (3), 1290-1295.
[19] Huang, C.-J.; Lin, Z.-E.; Yang, Y.-S.; Chan, H.W.-H.; Chen, W.-Y. Neutralized Chimeric DNA Probe for Detection of Single Nucleotide Polymorphism on Surface Plasmon Resonance Biosensor. Biosens. Bioelectron. 2018, 99, 170-175.
[20] Liu, B.; Liu, J. Accelerating Peroxidase Mimicking Nanozymes Using DNA. Nanoscale 2015, 7, 13831-13835.
[21] Thurn, K.T.; Paunescu, T.; Wu, A.; Brown, E.M.B.; Lai, B.; Vogt, S.; Maser, J.; Aslam, M.; Dravid, V.; Bergan, R. et al. Labeling TiO2 Nanoparticles with Dyes for Optical Fluorescence Microscopy and Determination of TiO2–DNA Nanoconjugate Stability. Small 2009, 5 (11), 1318-1325.
[22] Bülbül, G.; Hayat, A.; Andreescu, S. ssDNA-Functionalized Nanoceria: A Redox-Active Aptaswitch for Biomolecular Recognition. Adv. Healthc. Mater. 2016, 5 (7), 822-828.
[23] Kim, M.I.; Park, K.S.; Park, H.G. Ultrafast Colorimetric Detection of Nucleic Acids Based on the Inhibition of the Oxidase Activity of Cerium Oxide Nanoparticles. Chem. Comm. 2014, 50, 9577-9580.
[24] Costa, D.; Garrain, P.-A.; Baaden, M. Understanding Small Biomolecule-Biomaterial Interactions: A Review of Fundamental Theoretical and Experimental Approaches for Biomolecule Interactions with Inorganic Surfaces. J. Biomed. Mater. Res. A., 2013, 101A (4), 1210-1222.
[25] Westall, J.C.; Hohl, H. A Comparison of Electrostatic Models for the Oxide/Solution Interface. Adv. Colloid Interface Sci. 1980, 12 (4), 265-294.
[26] Cristl, I.; Kretzschmar ,R. Competitive Sorption of Copper and Lead at the Oxide-Water Interface: Implications for Surface Site Density. Geochim. Cosmochim. Acta 1999, 63 (19-20), 2929-2938.
[27] Ludwig, Chr. GRFIT, a Program for Solving Speciation Problems, Evaluation of Equilibrium Constants, Concentrations, and Other Physical Parameters; Internal Report of University of Bern, 1992.
[28] Davis, J.A.; Kent D.B. Surface Complexation Modeling in Aqueous Geochemistry. In Mineral-Water Interface Geochemistry; Hochella, M.F,; White, A.F., Eds.; California, USA., 1990; pp 177-260.
[29] Kosmulski, M. Chemical Properties of Materials Surfaces; Marcel Dekker: New York – Basel, 2001.
[30] Saenger, W. Principles of Nucleic Acid Structure; Springer: New York, 1984.
[31] Smith, R.M.; Martell, A.E.; Chen, Y. Critical evaluation of stability constants for nucleotide complexes with protons and metal ions and the accompanying enthalpy changes. Pure Appl. Chem. 1991, 63 (7), 1015-1080.
[32] Thaplyal, P.; Bevilacqua, P.C. Chapter Nine - Experimental Approaches for Measuring pKa’s in RNA and DNA. Methods Enzymol. 2014, 549, 189-219.
[33] Childs, C.W. Potentiometric Study of Equilibriums in Aqueous Divalent Metal Orthophosphate Solutions. Inorg. Chem. 1970, 9 (11), 2465-2269.
[34] Galal-Gorchev, H.; Stumm, W.J. The Reaction of Ferric Iron with ortho-Phosphate. J. Inorg. Nucl. Chem. 1963, 25 (5), 567-574.
[35] Martell, A.E.; Smith, R.M. Critical Stability Constants. V. 4. Inorganic Complexes; Springer: New York, 1974.
[36] Connor, P.A.; McQuillan, A.J. Phosphate Adsorption onto TiO2 from Aqueous Solutions:  An in Situ Internal Reflection Infrared Spectroscopic Study. Langmuir 1999, 15 (8), 2916-2921.
[37] Michelmore, A.; Gong, W.; Jenkins, P.; Ralston, J. The Interaction of Linear Polyphosphates with Titanium Dioxide Surfaces. Phys. Chem. Chem. Phys. 2000, 2, 2985-2992.
[38] Gong, W. A Real Time in Situ ATR-FTIR Spectroscopic Study of Linear Phosphate Adsorption on Titania Surfaces. Int. J. Miner. Process. 2001, 63 (3), 147-164.
[39] Rahnemaie, R.; Hiemstra, T.; Van Riemsdijk, W.H. Geometry, Charge Distribution, and Surface Speciation of Phosphate on Goethite. Langmuir 2007, 23 (7), 3680-3689.
[40] Kang, S.A.; Li, W.; Lee, H.E.; Phillips, B.L.; Lee, Y.J. Phosphate Uptake by TiO2: Batch Studies and NMR Spectroscopic Evidence for Multisite Adsorption. J. Colloid Interface Sci. 2011, 364 (2), 455-461.
[41] Tielens, F.; Gervais, C.; Deroy, G.; Jaber, M.; Stievano, L.; Diogo, C.C.; Lambert, J.-F. Characterization of Phosphate Species on Hydrated Anatase TiO2 Surfaces. Langmuir 2016, 32 (4), 997-1008.
[42] Feuillie, C.; Sverjensky, D.A.; Hazen, R.M. Attachment of Ribonucleotides on α-Alumina as a Function of pH, Ionic Strength, and Surface Loading. Langmuir 2015, 31 (1), 240-248.