Interaction Effect of Operating Parameters during Oxidation of Different Dyes via the Fenton Process. Application of the Plackett-Burmann Design

2023;
: pp. 154 - 163
1
LOMOP Research Laboratory, Badji Mokhtar University of Annaba,Department of Process Engineering, Badji Mokhtar University of Annaba
2
LOMOP Research Laboratory, Badji Mokhtar University of Annaba, Department of Chemistry, Badji Mokhtar University of Annaba
3
LOMOP Research Laboratory, Badji Mokhtar University of Annaba, Department of Process Engineering, Badji Mokhtar University of Annaba

The interaction effect of eight operating factors on the degradation of three organic dyes of different structures (Cibacron green, methylene blue and methyl orange) has been studied. Effect had been evaluated statistically using the Plackett-Burman screening design which ex-tracted valuable information on the most important parameters and their interactions. The goodness of the model fit was checked by the determination of the coefficient R2. The process factors, which affected the degradation efficiency of dyes, were then analyzed and illustrated; the most important valueі (p and F) for three dyes proved the validity of the model. The results of interactions between the factors allow to understand and study the impact of each parameter on the elimination of dyes and to distinguish the key factor to upgrade the efficiency of the Fenton process.

  1. Fenton, H.J.H., Jackson, H.J. I. - The Oxidation of Polyhydric Alcohols in Presence of Iron. J. Chem. Soc. Trans. 1899, 75, 1-11. https://doi.org/10.1039/CT8997500001
  2. Fenton, H.J.H., Jones, H.O. VII. - The Oxidation of Organic Acids in Presence of Ferrous Iron. Part I. J. Chem. Soc. Trans. 1900, 77, 69-76. https://doi.org/10.1039/CT9007700069
  3. Li, W.; Xu, L. Research Methods for the Degradation Mechan-ism of Organic Pollutants in Wastewater. Acta Chim. Sinica 2019, 77, 705-716. https://doi.org/10.6023/A19030073
  4. Su, S.; Liu, Y.; Liu X.; Jin, W.; Zhao, Y. Transformation Pathway and Degradation Mechanism of Methylene Blue Through Β-Feooh@GO Catalyzed Photo-Fenton-Like System. Chemosphere 2019, 218, 83-92. https://doi.org/10.1016/j.chemosphere.2018.11.098
  5. Jegan Durai, N.; Gopalakrishna, G.V. T.; Padmanaban, V.C.; Selvaraju N. Oxidative Removal of Stabilized Landfill Leachate by Fenton's Process: Process Modeling, Optimization & Analysis of Degraded Products. RCS Adv. 2020, 10, 3916-3925. https://doi.org/10.1039/C9RA09415F
  6. Elhalil, A.; Tounsadi, H.; Elmoubarki R.; Mahjoubi, F.Z.; Far-nane M.; Sadiq, M.; Abdennouri, M.; Qourzal, S.;Barka, N. Factorial Experimental Design for The Optimization of Catalytic Degradation of Malachite Green Dye in Aqueous Solution by Fenton Process. Water Resour. Ind. 2016, 15, 41-48. https://doi.org/10.1016/j.wri.2016.07.002
  7. Jian-Hui Sun, J.-H.; Sun S.-P.; Wang G.-L.; Qiao L.-P. Degradation of Azo Dye Amido Black 10B in Aqueous Solution by Fenton Oxidation Process. Dyes Pigm. 2007, 74, 647-652. https://doi.org/10.1016/j.dyepig.2006.04.006
  8. Sillanpää, M., Ncibi, M.C., Matilainen, A. Advanced Oxidation Processes for The Removal of Natural Organic Matter from Drink-ing Water Sources: A Comprehensive Review. J. Environ. Manage. 2018, 208, 56-76. https://doi.org/10.1016/j.jenvman.2017.12.009
  9. Khue, D.N.; Lam, T.D.; Van Chat, N.; Bach, V.Q.; Minch, D.B.; Loi, V.D.; Van Anh, N. Simultaneous Degradation of 2,4,6-Trinitrophenyl-N-Methylnitramine (Tetryl) and Hexahydro-1,3,5-Trinitro-1,3,5 Triazine (RDX) in Polluted Wastewater Using Some Advanced Oxidation Processes. J. Ind. Eng. Chem. 2014, 20, 1468-1475. https://doi.org/10.1016/j.jiec.2013.07.033
  10. Oh, S.Y.; Yoon, H.S.; Jeong, T.Y.; Kim, S.D. Evaluation of Remediation Processes for Explosive-Contaminated Soils: Kinetics and Microtox® Bioassay. J. Chem. Technol. Biotechnol. 2016, 91, 928-937. https://doi.org/10.1002/jctb.4658
  11. Ghernaout, D.; Elboughdiri, N.; Ghareba, S. Fenton Technolo-gy for Wastewater Treatment: Dares and Trends. OALib. J. 2020, 7, e6045. https://doi.org/10.4236/oalib.1106045
  12. Karthikeyan, S.; Titus, A.; Gnanamani, A.; Mandal, A.B.; Sekaran, G. Treatment of Textile Wastewater by Homogeneous and Heterogeneous Fenton Oxidation Processes. Desalination 2011, 281, 438-445. https://doi.org/10.1016/j.desal.2011.08.019
  13. Hermosilla, D.; Merayo, N.; Gascó, A.; Blanco, Á. The Application of Advanced Oxidation Technologies to The Treatment of Effluents from The Pulp and Paper Industry: A Review. Environ. Sci. Pollut. Res. 2015, 22, 168-191. https://doi.org/10.1007/s11356-014-3516-1
  14. Ma, C.; Feng, S.; Zhou, J.; Chen, R.; Wei, Y.; Liu, X.; Wang, S. Enhancement of H2O2 Decomposition Efficiency by The Co-Catalytic Effect of Iron Phosphide on The Fenton Reaction for The Degradation of Methylene Blue. Appl. Catal. B 2019, 259, 118015. https://doi.org/10.1016/j.apcatb.2019.118015
  15. Munoz, M.; De Pedro, Z.M.; Casas, J.A.; Rodriguez, J.J. Preparation of Magnetite-Based Catalysts and Their Application in Heterogeneous Fenton Oxidation - A Review. Appl. Catal. B 2015, 176-177, 249-265. https://doi.org/10.1016/j.apcatb.2015.04.003
  16. Pan, X.; Cheng, S.; Su, T.; Zuo, G.; Zhao, W.; Qi, X.; Wei, W.; Dong, W. Fenton-Like Catalyst Fe3O4@Polydopamine-MnO2 for Enhancing Removal of Methylene Blue in Wastewater. Colloids Surf. B 2019, 181, 226-233. https://doi.org/10.1016/j.colsurfb.2019.05.048
  17. Esmaeili, N.; Mohammadi, P.; Abbaszadeh, M.; Sheibani, H. Au Nanoparticles Decorated on Magnetic Nanocomposite (GO-Fe3O4/Dop/Au) as A Recoverable Catalyst for Degradation of Methylene Blue and Methyl Orange in Water. Int. J. Hydrog. Energy 2019, 44, 23002-23009. https://doi.org/10.1016/j.ijhydene.2019.07.025
  18. Antony, J. 3 - Understanding Key Interactions in Processes. Design of Experiments for Engineers and Scientists, 2nd ed.; Elsevi-er, 2014, pp 19-32. https://doi.org/10.1016/B978-0-08-099417-8.00003-1
  19. Iida, Y.; Yasui, K.; Tuziuti, T.; Sivakumar M. Sonochemistry and Its Dosimetry. Microchem. J. 2005, 80, 159-164. https://doi.org/10.1016/j.microc.2004.07.016
  20. Ge, J.; Qu, J.: Degradation of Azo Dye Acid Red B on Manganese Dioxide in The Absence and Presence of Ultrasonic Irradiation. J. Hazard Mater. 2003, 100, 197-207. https://doi.org/10.1016/S0304-3894(03)00105-5
  21. Joglekar, A.M.; May, A.T. Product Excellence Through Design of Experiments. Cereal Foods World 1987, 32, 857-868.
  22. Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross A.B. Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (Oh/O−) in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17, 513. https://doi.org/10.1063/1.555805
  23. Kavitha, V.; Palanivelu, K. Destruction of Cresols by Fenton Oxidation Process. Water Res. 2005, 39, 3062-3072. https://doi.org/10.1016/j.watres.2005.05.011
  24. Luo, W.; Abbas, M.E.; Zhu, L.; Deng, K.; Tang, H. Rapid Quantitative Determination of Hydrogen Peroxide by Oxidation Decolorization of Methyl Orange Using a Fenton Reaction System. Anal. Chim. Acta 2008, 629(1-2), 1-5. https://doi.org/10.1016/j.aca.2008.09.009
  25. Youssef, N.A.; Shaban, S.A.; Ibrahim, F.A.; Mahmoud, A.S. Degradation of Methyl Orange Using Fenton Catalytic Reaction. Egypt. J. Pet. 2016, 25, 317-321. https://doi.org/10.1016/j.ejpe.2015.07.017
  26. Hashemian, S.; Tabatabaee, M.; Gafari, M. Fenton Oxidation of Methyl Violet in Aqueous Solution. J. Chem. 2013, 2013, Article ID 509097. https://doi.org/10.1155/2013/509097
  27. Hashemian, S. Fenton-Like Oxidation of Malachite Green Solutions: Kinetic and Thermodynamic Study. J. Chem. 2013, 2013, Article ID 809318. https://doi.org/10.1155/2013/809318
  28. de Souza, D.R.; Mendonça Duarte, E.T.F.; de Souza Girardi, G.; Velani, V.; da Hora Machado, A.E.; Sattler, C.; de Oliveira, L.; de Miranda, J.A. Study of Kinetic Parameters Related to The Degradation of an Industrial Effluent Using Fenton-Like Reactions. J. Photochem. Photobiol. A 2006, 179, 269. https://doi.org/10.1016/j.jphotochem.2005.08.025
  29. Xu, H.Y.; Prasad, M.; Liu, Y. Schorl: A Novel Catalyst in Mineral-Catalyzed Fenton-Like System for Dyeing Wastewater Discoloration. J. Hazard. Mater. 2009, 165, 1186-1192. https://doi.org/10.1016/j.jhazmat.2008.10.108
  30. Sirtori, C.; Zapata, A.; Oller, I.; Gerniak, W.; Agüera, A.; Malato, S. Solar Photo-Fenton as Finishing Step for Biological Treatment of a Pharmaceutical Wastewater. Environ. Sci. Technol. 2009, 43, 1185-1191. https://doi.org/10.1021/es802550y
  31. Bacardit, J.; Stötzner, J.; Chamarro E.; Esplugas, S. Effect of Salinity on the Photo-Fenton Process. Ind. Eng. Chem.Res. 2007, 46, 7615-7619. https://doi.org/10.1021/ie070154o
  32. Dong, Y.; Chen, J.; Li, C.; Zhu, H. Decoloration of Three Azo Dyes in Water by Photocatalysis of Fe(III)-Oxalate Complex-es/H2O2 in the Presence of Inorganic Salts. Dyes Pigm. 2007, 73, 261-268. https://doi.org/10.1016/j.dyepig.2005.12.007
  33. El-Fass, M.M.; Badawy, N.A.; El-Bayaa, A.A.; Moursy, N.S. The Influence of Simple Electrolyte on the Behaviour of Some Acid Dyes in Aqueous Media. Bull. Korean Chem. Soc. 1995, 16(5), 458-461.