Waste Food Oils as Components of Eco-Friendly Grease

: pp. 431 - 437
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine

The possibility of obtaining eco-safety surfactants and high-temperature dispersed phase of thixotropic plastic systems based on waste food oils were demonstrated. The structure of the synthesized fatty acid alkanolamides was confirmed by IR and 1H NMR spectroscopy. The upper temperature limit (above 463 К) for the use of synthesized fatty acids alkanolamides and complex calcium grease was determined by thermogravimetric analysis. The introduction of fatty acid alkanolamides to the high-temperature composition of grease improves its tribological, anti-oxidant and environmental characteris-tics.

  1. Pinheiro, C.T.; Quina, M.J.; Gando-Ferreira, L.M. Management of Waste Lubricant Oil in Europe: A Circular Economy Approach. Crit. Rev. Environ. Sci. Technol. 2021, 51, 2015-2050. https://doi.org/10.1080/10643389.2020.1771887
  2. Monier, V.; Labouze, E. Critical Review of Existing Studies and Life Cycle Analysis on the Regeneration and Incineration of Waste Oils. European Commission. DG Environment A2 - Sustainable Resources Consumption and Waste. France, 2001. https://ec.europa.eu/environment/pdf/waste/studies/oil/waste_oil.pdf (accessed 2022-04-21).
  3. Stahl, H.; Merz C. Study to Support the Commission in Gathering Structured Information and Defining of Reporting Obligations on Waste Oils and Other Hazardous Waste. Luxembourg: Publications Office of the European Union, 2020. https://doi.org/10.2779/14834https://esrg.de/media/PDF/EU_STUDY_WasteOil_Solvents_Oeko_final-report_f... (accessed 2022-04-21).
  4. Bodachivska, L.Yu.; Verba, A.Yu.; Safronov, O.I.; Davitadze, D.Z.; Papeikin, O.O.; Venger, I.O. Surfactants Based on Lipoid Biomass and their Use in Technological Systems for Gas and Crude Oil Production. Catalysis and Petrochemistry 2019, 28, 1-19. https://doi.org/10.15407/kataliz2019.28.001
  5. Li, W.; Wang, X. Bio-lubricants Derived from Waste Cooking Oil with Improved Oxidation Stability and Low-temperature Properties J. Oleo Sci. 2015, 64, 367-374. https://doi.org/10.5650/jos.ess14235
  6. Kurańska, M.; Benes, H.; Polaczek, K.; Trhlikova, O.; Walterova, Z.; Prociak, A. Effect of Homogeneous Catalysts on Ring Opening Reactions of Epoxidized Cooking Oils. J. Clean. Prod. 2019, 230, 162-169. https://doi.org/10.1016/j.jclepro.2019.05.096
  7. Kukana, R.; Jakhar, O.P. An Appraisal on Enablers for Enhancement of Waste Cooking Oil-Based Biodiesel Production Facilities Using the Interpretative Structural Modeling Approach. Biotechnol. Biofuels Bioprod. 2021, 14, 213. https://doi.org/10.1186/s13068-021-02061-2
  8. Orjuela, A; Clark, J. Green Chemicals from Used Cooking Oils: Trends, Challenges, and Opportunities. Curr. Opin. Green Sustain. Chem. 2020, 26, 100369. https://doi.org/10.1016/j.cogsc.2020.100369
  9. Mannu, A.; Garroni, S.; Porras, J.I.; Mele, A. Available Technologies and Materials for Waste Cooking Oil Recycling. Processes 2020, 8, 366. https://doi.org/10.3390/pr8030366
  10. Nascimento, L.; Ribeiro, A.; Ferreira, A.; Valério, N.; Pinheiro, V.; Araújo, J.; Vilarinho, C.; Carvalho, J. Turning Waste Cooking Oils into Biofuels-Valorization Technologies: A Review. Energies 2022, 15, 116. https://doi.org/10.3390/en15010116
  11. Singh, D.; Sharma, D.; Soni, S.L.; Inda, C.S.; Sharma, S.; Sharma, P.K., Jhalani, A. A Comprehensive Review of Biodiesel Production from Waste Cooking Oil and its Use as Fuel in Compression Ignition Engines: 3rd Generation Cleaner Feedstock. J. Clean. Prod. 2021, 307, 127299. https://doi.org/10.1016/j.jclepro.2021.127299
  12. Sharma, P.; Usman, M.; Salama, E.-S.; Redina, M.; Thakur, N.; Li, X. Evaluation of Various Waste Cooking Oils for Biodiesel Production: A Comprehensive Analysis of Feedstock. Waste Man-age. 2021, 136, 219-229. https://doi.org/10.1016/j.wasman.2021.10.022
  13. Hosseinzadeh-Bandbafha, H.; Li, Ch.; Chen, X.; Peng, W.; Aghbashlo, M.; Lam, S.Sh.; Tabatabaei, M. Managing the Hazardous Waste Cooking Oil by Conversion into Bioenergy Through the Application of Waste-Derived Green Catalysts: A Review. J. Hazard. Mater. 2022, 424, 127636. https://doi.org/10.1016/j.jhazmat.2021.127636
  14. Buchori, L.; Anggoro, D.D.; Ma'ruf, A. Biodiesel Synthesis from the Used Cooking Oil Using CaO Catalyst Derived from Waste Animal Bones. Chem. Chem. Technol. 2021, 15, 583-590. https://doi.org/10.23939/chcht15.04.583
  15. Lubricant Substance Classification list (LuSC-list). Version date: 17/02/2022. https://ec.europa.eu/environment/ecolabel/documents/LuSC-list%20vs%20200... (accessed 2022-04-21).
  16. Ardai, R. Environmentally Acceptable Lithium Complex Grease for a Wide Temperature Range. NLGI Spokesman 2020, 84, 12-26.
  17. Meza, A. Guidelines for Selecting High-temperature Lubricants. Machinery Lubrication 2016, November - December, 28-32. https://www.machinerylubrication.com/Read/30674/high-temperature-lubricants
  18. Ischuk, Yu.L. Sostav, struktura i svoistva plastichnykh smazok; Naukova dumka: Kyiv, 1996.
  19. Badertscher, M.; Bühlmann, Ph.; Pretsch, E. Structure Determination of Organic Compounds. Tables of Spectral Data; Springer Berlin: Heidelberg, 2009.
  20. Klamann, D.; Rost, R.R. Lubricants and related products. Synthesis, properties, applications, international standards; Verlag Chemie: Weinheim, 1984.
  21. Lubricants and Lubrication; Mang, T.; Dresel, W., Eds.; Wiley-VCH, 2017.
  22. Canter, N. Biodegradable Lubricants: Working Definitions, Review of Key Applications and Prospects for Growth. Tribol. Lubr. Technol. 2020, December, 34-47.
  23. Papeikin, O.; Safronov, O.; Bodachivska, L.; Venger, I. Synthesis and Properties of Urea Greases Based on Aminoamides of Plant Oil Phosphatides. East.-Eur. J. Enterp. Technol. 2020, 4, 54-60. https://doi.org/10.15587/1729-4061.2020.210043