Cracking Optimization of Palmitic Acid Using Fe3+ Modified Natural Mordenite for Producing Aviation Fuel Compounds

2023;
: pp. 625 - 635
1
Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga
2
Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga
3
Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga
4
Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga
5
Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga
6
Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga

Natural mordenite from Turen village Malang district Indonesia has been modified to Fe3+-mordenite for heterogenous catalyst in cracking process of palmitic acid to produce Aviation fuel components. Cation exchange method has been used in mordenite modification using FeCl3. The Fe3+-mordenite was characterized by structure analysis, Fe content, Si/Al ratio, number of acid sites, pore size, pore volume, and surface area. The catalytic performances, conversion, and selectivity were measured at 583 K by GC-MS for 1, 2, and 3 hours. The high content of Fe in mordenite has larger Brønsted-Lewis’s acid site, pore volume and surface area than the natural mordenite. The crystal structure of Fe3+-mordenite is still the same with natural mordenite. The Fe3+-mordenite also has a smaller pore size than the natural mordenite. In cracking process of palmitic acid, Fe3+-mordenite performed 61.94 % of conversion and 92.90 %, which produced aviation fuel compounds, namely alkanes, alkene, cycloalkane and aromatic.

  1. [Wafiroh, S.; Wathoniyyah, M.; Abdulloh, A.; Rahardjo, Y.; Fahmi, M.Z. Application of Glutaraldehyde-Crosslinked Chitosan Membranes from Shrimp Shellwaste on Production of Biodiesel from Calophyllum Inophyllum Oil. Chem. Chem. Technol. 2017, 11, 65-70. https://dx.doi.org/10.23939/chcht11.01.065
  2. Boichenko, S.; Vovk, O.; Iakovlieva, A. Overview of Innova-tive Technologies for Aviation Fuels Production. Chem. Chem. Technol. 2013, 7, 305-312. https://doi.org/10.23939/chcht07.03.305
  3. Adi, A.C. et al. Handbook of Energy and Economic Statistics of Indonesia 2018; Ministry of Energy and Mineral Resources Republic of Indonesia: Jakarta, 2019.
  4. Sukmana, Y. Mulai Bulan Ini, Indonesia Tak Impor Avtur dan Solar; Kompas.com, 2019. https://money.kompas.com/read/2019/05/10/150842626/mulai-bulan-ini-indon...
  5. Blakey, S.; Rye, L.; Wilson, C.W. Aviation Gas Turbine Alternative Fuels: A Review. Proc Combust Inst 2011, 33, 2863-2885. https://doi.org/10.1016/j.proci.2010.09.011
  6. Sousa, F.P.; Silva, L.N.; de Rezende, D.B.; de Oliveira, L.C.A.; Pasa, V.M.D. Simultaneous Deoxygenation, Cracking and Isomerization of Palm Kernel Oil and Palm Olein Over Beta Zeolite to Produce Biogasoline, Green Diesel and Biojet-Fuel. Fuel 2018, 223, 149-156. https://doi.org/10.1016/j.fuel.2018.03.020
  7. Carli, M.F.; Susanto, B.H.; Habibie, T.K. Sythesis of Bioavture Through Hydrodeoxygenation and Catalytic Cracking from Oleic Acid Using NiMo/Zeolit Catalyst. E3S Web of Conferences 2018, 67, 02023. http://dx.doi.org/10.1051/e3sconf/20186702023
  8. Abdulloh, A.; Purkan, P.; Hardiansyah, N. Preparasi dan karakterisasi α-Fe2O3/zeolit Y untuk reaksi perengkahan asam palmitat AS. Jurnal Kimia Riset 2017, 2, 69–76. http://dx.doi.org/10.20473/jkr.v2i2.6166
  9. BPS, Statistik Kelapa Sawit Indonesia 2018; Badan Pusat Statistik: Indonesia, 2019.
  10. BPS, ESDM dalam Angka 2016, [Online] 2017. http://esdm.jatimprov.go.id/esdm/attachments/article/89/esdm dalam angka 2016.pdf. [Accessed: 15-Dec-2019].
  11. Rahayu, P.E.; Priatmoko, S.; Kadarwati, S. Konversi Minyak Sawit Menjadi Biogasoline Menggunakan Katalis Ni/Zeolit Alam. Indo. J. Chem. Sci. 2013, 2, 102-107.
  12. Prado, C.M.R.; Antoniosi Filho, N.R. Production and Charac-terization of the Biofuels Obtained by Thermal Cracking and Ther-mal Catalytic Cracking of Vegetable Oils. J Anal Appl Pyrolysis 2009, 86, 338-347. https://doi.org/10.1016/j.jaap.2009.08.005
  13. Ravindra Reddy, C.; Nagendrappa, G.; Jai Prakash, B.S. Surface Acidity Study of Mn+-Montmorillonite Clay Catalysts by FT-IR Spectroscopy: Correlation with Esterification Activity Catal. Commun. 2007, 8, 241-246. http://dx.doi.org/10.1016/j.catcom.2006.06.023
  14. Bergaya, F.; Lagaly, G. Chapter 1 General Introduction: Clays, Clay Minerals, and Clay Science. Dev. Clay Sci. 2006, 1, 1-18. http://dx.doi.org/10.1016/S1572-4352(05)01001-9
  15. Joeniarti, E.; Susilo, A.; Ardiarini, N.R.; Indrasari, N.; Fahmi, M.Z. Efficiency Study of Neem Seeds-Based Nanobiopesticides. Chem. Chem. Technol. 2019, 13, 240-246. https://doi.org/10.23939/chcht13.02.240
  16. Prelina, B.; Wardana, J.; Isyatir, R.A.; Syukriyah, Z.; Wafiroh, S.; Raharjo, Y.; Wathoniyyah, M.; Widati, A.A.; Fahmi, M.Z. Innovation of Zeolite Modified Polyethersulfone Hollow Fibre Membrane for Haemodialysis of Creatinine. Chem. Chem. Technol. 2018, 12, 331-336. https://doi.org/10.23939/chcht12.03.331
  17. Jaya Hardi, R.; Mirzan, M. Sintesis dan karakterisasi katalis lempung terpilar zirkonia tersulfatasi sebagai katalis perengkah. Prosiding Seminar Nasional Kimia UNY 2017 325-334.
  18. Duhamel T.; Muñiz, K. Cooperative Iodine and Photoredox Catalysis for Direct Oxidative Lactonization of Carboxylic Acids. Chem. Commun. 2019, 55, 933-936. https://doi.org/10.1039/C8CC08594C
  19. Liu, Y.; Yao, L.; Xin, H.; Wang, G.; Li, D.; Hu, C. The Pro-duction of Diesel-Like Hydrocarbons from Palmitic Acid over HZSM-22 Supported Nickel Phosphide Catalysts. Appl. Catal. B 2015, 174–175, 504-514. https://doi.org/10.1016/j.apcatb.2015.03.023
  20. Abbot, J.; Wojciechowski, B.W. The Mechanism of Catalytic Cracking of n-Alkenes on ZSM-5 Zeolite. Can J Chem Eng 1985, 63, 462–469. https://doi.org/10.1002/cjce.5450630315
  21. Oliver-Tomas, B.; Gonell, F.; Pulido, A.; Renz, M.; Boronat, M. Effect of the Cα Substitution on the Ketonic Decarboxylation of Carboxylic Acids over m-ZrO2: The Role of Entropy. Catal. Sci. Technol. 2016, 6, 5561-5566. https://doi.org/10.1039/C6CY00395H