The present paper aims to study the feasibility of using an activated carbon prepared by Juniperus thurifera tree as an adsorbent to remove phenol from water by adsorption. The impact of initial phenol concentration, contact time, pH, and adsorbent mass on phenol adsorp-tion capacity was investigated. It was reported that the highest adsorption capacity is achieved at pH=3.4, phenol concentration of 50 mg/L, adsorbent mass of 100 mg, and time 24 h. Freundlich, Langmuir, and Temkin isotherm equations were used to best fit our experimental data. Hence, Freundlich model was found to be the best model with R2 = 0.9893. The thermodynamic results revealed that the adsorption of phenol onto the activated carbon was spontaneous and exothermic. Furthermore, the adsorption kinetic study indicated that the adsorption process follows the pseudo-first-order kinetic model.
- Damjanović, L.; Rakić, V.; Rac, V.; Stošić, D.; Auroux, A. The Investigation of Phenol Removal from Aqueous Solutions by Zeo-lites as Solid Adsorbents. J. Hazard. Mater. 2010, 184, 477-484. https://doi.org/10.1016/j.jhazmat.2010.08.059
- Lin, S.H.; Juang, R.S. Adsorption of Phenol and Its Derivatives from Water Using Synthetic Resins and Low-Cost Natural Adsorbents: A Review. J. Environ. Manage. 2009, 90, 1336-1349. https://doi.org/10.1016/j.jenvman.2008.09.003
- Megharaj, M.; Pearson, H.W.; Venkateswarlu, K. Toxicity of Phenol and Three Nitrophenols Towards Growth and Metabolic Activities of Nostoc Linckia, Isolated from Soil. Arch. Environ. Contam. Toxicol. 1991, 21, 578-584. https://doi.org/10.1007/BF01183881
- Yang, L.; Wang, Y.; Song, J.; Zhao, W.; He, X.; Chen, J.; Xiao, M. Promotion of Plant Growth and in situ Degradation of Phenol by an Engineered Pseudomonas fluorescens Strain in Different Contaminated Environments. Soil Biol. Biochem. 2011, 43, 915-922. https://doi.org/10.1016/j.soilbio.2011.01.001
- World Health Organization, Guidelines for Drinking Water Quality, Health Criteria and Supporting Information; World Health Organization: Geneva, Switzerland, 1984; pp. 1-127.
- Dutta, N.N.; Brothakur, S.; Baruah, R. A Novel Process for Recovery of Phenol from Alkaline Wastewater: Laboratory Study and Predesign Cost Estimate. Water Environ. Res. 1998, 70, 4-9. https://doi.org/10.2175/106143098X126838
- Baup, S.; Jaffre, C.; Wolbert, D.; Laplanche, A. Adsorption of Pesticides onto Granular Activated Carbon: Determination of Sur-face Diffusivities Using Simple Batch Experiments. Adsorption 2000, 6, 219-228. https://doi.org/10.1023/A:1008937210953
- Md Ahmaruzzaman. Adsorption of Phenolic Compounds on Low-Cost Adsorbents: A Review. Adv. Colloid Interface Sci. 2008, 143, 48-67. https://doi.org/10.1016/j.cis.2008.07.002
- Kim, T.Y.; Jin, H.J.; Park, S.S.; Kim, S.J.; Cho, S.Y. Adsorption Equilibrium of Copper Ion and Phenol by Powdered Activated Carbon, Alginate Bead and Alginate-Activated Carbon Bead. J. Ind. Eng. Chem. 2008, 14, 714-719. https://doi.org/10.1016/j.jiec.2008.07.004
- Fan, J.; Zhang, J.; Zhang, C.; Ren, L.; Shi, Q. Adsorption of 2,4,6-Trichlorophenol from Aqueous Solution onto Activated Carbon Derived from loosestrife. Desalination 2011, 267, 139-146. https://doi.org/10.1016/j.desal.2010.09.016
- Haghighat, M.H.; Mohammad-Khah, A. Removal of Triha-lomethanes from Water using Modified Montmorillonite. Acta Chim. Slov. 2020, 67, 1072. http://dx.doi.org/10.17344/acsi.2020.5832
- Ren, S.; Deng, J.; Meng, Z.; Wang, T.; Xie, T.; Xu, S. En-hanced Removal of Phenol by Novel Magnetic Bentonite Compo-sites Modified with Amphoteric-Cationic Surfactants. Powder Technol. 2019, 356, 284-294. https://doi.org/10.1016/j.powtec.2019.08.024
- Ouallal, H.; Dehmani, Y.; Moussout, H.; Messaoudi, L.; Azrour, M. Kinetic, Isotherm and Mechanism Investigations of the Removal of Phenols from Water by Raw and Calcined Clays. He-liyon 2019, 5, e01616. https://doi.org/10.1016/j.heliyon.2019.e01616
- Bouiahya, K.; Es-saidi, I.; El Bekkali, C.; Laghzizil, A.; Ro-bert, D.; Nunzi, J.M.; Saoiabi, A. Synthesis and Properties of Alumina-Hydroxyapatite Composites from Natural Phosphate for Phenol Removal from Water. Colloids Interface Sci. Commun. 2019, 31, 100188. https://doi.org/10.1016/j.colcom.2019.100188
- Liao, Q.; Sun, J.; Gao, L. The Adsorption of Resorcinol from Water Using Multi-Walled Carbon Nanotubes. Colloids Surf. A: Physicochem. Eng. Asp. 2008, 312, 160-165. https://doi.org/10.1016/j.colsurfa.2007.06.045
- Chakraborty, A.; Deva, D.; Sharma, A.; Verma, N. Adsor-bents Based on Carbon Microfibers and Carbon Nanofibers for the Removal of Phenol and Lead from Water. J. Colloid Interface Sci. 2011, 359, 228-239. http://dx.doi.org/10.1016/j.jcis.2011.03.057
- Sulaymon, A.H.; Ahmed, K.W. Competitive Adsorption of Furfural and Phenolic Compounds onto Activated Carbon in Fixed Bed Column. Environ. Sci. Technol. 2008, 42, 392-397. https://doi.org/10.1021/es070516j
- Okasha, A.Y.; Ibrahim, H.G. Phenol Removal from Aqueous Systems by Sorption of Using Some Local Waste Materials. Elec. J. Env. Agricult. Food Chem. 2010, 9, 796-807.
- Senthilkumaar, S.; Krishna, S.K.; Kalaamani, P.; Subbura-maan, C.V.; Ganapathi Subramaniam, N. Adsorption of Organo-phosphorous Pesticide from Aqueous Solution Using “Waste” Jute Fiber Carbon. Mod. Appl. Sci. 2010, 4, 67-83.
- Ekop, A.S.; Eddy, N.O. Thermodynamic Study on the Ad-sorption of Pb2+ and Zn2+ From Aqueous Solution by Human Hair. J. Chem. 2010, 7, 849239. https://doi.org/10.1155/2010/849239
- Mukherjee, S.; Kumar, S.A.; Misra, K.; Fan, M. Removal of Phenols from Water Environment by Activated Carbon, Bagasse Ash and Wood Charcoal. Chem. Eng. J. 2007, 129, 133-142. https://doi.org/10.1016/j.cej.2006.10.030
- Gauquelin, T.; Bertaudière, V.; Cambecèdes, J.; Largier, G. Le Genevrier Thurifere (Juniperus Thurifera L.) Dans les Pyrenees: Etat de Conservation et Perspectives. Acta Bot. Barc. 2003, 49, 83-94.
- Humelnicu, D.; Ignat, M.; Suchea, M. Evaluation of Adsorp-tion Capacity of Montmorillonite and Aluminium-pillared Clay for Pb2+ , Cu2+ and Zn2+. Acta Chim. Slov. 2015, 62, 947. http://dx.doi.org/10.17344/acsi.2015.1825
- Maulina, S.; Mentari, V.A. IOP Conf. Series: Materials Science and Engineering, 2019; pp. 012023.
- Mahalakshmy, R.; Idraneel, P.; Viswanatan, B. Surface Func-tionalities of Nitric Acid Treated Carbon – A Density Functional Theory Based Vibrational Analysis. Indian J. Chem. 2009, 48, 352-356. http://nopr.niscpr.res.in/handle/123456789/3371
- El Nemr, A.; Abdelwahab, O.; El-Sikaily, A.; Khaled, A. Removal of Direct Blue-86 from Aqueous Solution by New Acti-vated Carbon Developed from Orange Peel. J. Hazard. Mater. 2009, 161, 102-110. https://doi.org/10.1016/j.jhazmat.2008.03.060
- Yan, M.A.; Gao, N.; Chu, W.; Li, C. Removal of Phenol by Powdered Activated Carbon Adsorption. Front. Environ. Sci. Eng. 2013, 7, 158-165. https://doi.org/10.1007/s11783-012-0479-7
- Lagergren, S. Kungliga Svenska Vetenskapsakademiens. Handlingar 1898, 24, 1-39.
- Ho, Y.S.; McKay, G. Pseudo-Second Order Model for Sorp-tion Processes. Process. Biochem. 1999, 34, 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
- Weber, W.J.; Morris, J.C. Advances in Water Pollution Re-search: Removal of Biologically Resistant Pollutant from Wastewa-ter by Adsorption. In Proceedings of 1st International Conference on Water Pollution Symposium; Pergamon: Oxford, 1962; pp. 231-266.
- Hameed, B.H. Equilibrium and Kinetics Studies of 2,4,6-Trichlorophenol Adsorption onto Activated Clay. Colloid Surf. A: Physicochem. Eng. Aspects 2007, 307, 45-52. https://doi.org/10.1016/j.colsurfa.2007.05.002
- Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361-1403. https://doi.org/10.1021/ja02242a004
- Ullah, H.; Nafees, M.; Iqbal, F.; Awan, S.; Shah, A.; Waseem, A. Adsorption Kinetics of Malachite Green and Methylene Blue from Aqueous Solutions Using Surfactant-Modified Organoclays. Acta Chim. Slov. 2017, 64, 449.
- Freundlich, H.M.F. Over the Adsorption in Solution. J. Phys. Chem. 1906, 57, 385-471.
- Senturk, I.; Alzein, M. Adsorption of Acid Violet 17 onto Acid-Activated Pistachio Shell: Isotherm, Kinetic and Thermody-namic Studies. Acta Chim. Slov. 2020, 67, 55-69. https://doi.org/10.17344/acsi.2019.5195
- Temkin, M.I.; Pyzhev, V. Kinetics of Ammonia Synthesis on Promoted Iron Catalysts. Acta Physicochim. 1940, 12, 327-356.