Modification by Fluorine as Efficient Tool for the Enhancement of the Performance of Organic Electroactive Compounds – A Review

2025;
: pp. 52 - 60
1
Department of Polymer Chemistry and Technology, Kaunas University of Technology; 2 Ivan Franko National University of Lviv
2
Ivan Franko National University of Lviv
3
Kaunas University of Technology

Functionalization of organic semiconductors with fluorine atoms and fluorine-containing groups can give rise to a wide variety of properties, for example, increase the rate of electron transport, induce harvesting of non-emissive triplet excitons through thermally activated delayed fluorescence (TADF) or room temperature phosphorescence (RTP), improve photoluminescence quantum yield (PLQY) by forming multiple intra- and intermolecular interactions, and increase solution- processabitily of the compounds, therefore, lowering the cost of device fabrication. Diverse synthetic approaches have been implemented to afford fluorinated organic semiconductors. In this review, we discuss some of the recent and most interesting organic semiconductors with C–F and C–CF3 bonds as well as their application.

  1. [1]   Shi, Y. Z.; Wu, H.; Wang, K.; Yu, J.; Ou, X. M.; Zhang, X. H. Recent Progress in Thermally Activated Delayed Fluorescence Emitters for Nondoped Organic Light-Emitting Diodes. Chem. Sci. 2022, 13, 3625–3651. https://doi.org/10.1039/D1SC07180G
  2. [2]   Shabir, G.; Saeed, A.; Zahid, W.; Naseer, F.; Riaz, Z.; Khalil, N.; Muneeba; Albericio, F. Chemistry and Pharmacology of Fluorinated Drugs Approved by the FDA (2016–2022). Pharmaceuticals 2023, 16, 1162. https://doi.org/10.3390/PH16081162
  3. [3]   Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. Applications of Fluorine in Medicinal Chemistry. J. Med. Chem. 2015, 58, 8315–8359. https://doi.org/10.1021/acs.jmedchem.5b00258
  4. [4]   Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Fluorine in Medicinal Chemistry. Chem. Soc. Rev. 2008, 37, 320–330. https://doi.org/10.1039/B610213C
  5. [5]   Han, J.; Remete, A. M.; Dobson, L. S.; Kiss, L.; Izawa, K.; Moriwaki, H.; Soloshonok, V. A.; O’Hagan, D. Next Generation Organofluorine Containing Blockbuster Drugs. J. Fluor. Chem. 2020, 239, 109639. https://doi.org/10.1016/J.JFLUCHEM.2020.109639
  6. [6]   Mukbaniani, O.; Aneli, J.; Plonska-Brzezinska, M.; Tatrishvili, T.; Markarashvili, E. Fluorine Containing Siloxane Based Polymer Electrolyte Membranes. Chem. Chem. Technol. 2019, 13, 444–450. https://doi.org/10.23939/chcht13.04.444
  7. [7]   Budnik, O.; Budnik, A.; Sviderskiy, V.; Berladir, K.; Rudenko, P. Structural Conformation of Polytetrafluoroethylene Composite Matrix. Chem. Chem. Technol. 2016, 10, 241–246. https://doi.org/10.23939/chcht10.02.241
  8. [8]   Chebotarev, A.; Demchuk, A.; Bevziuk, K.; Snigur, D. Mixed Ligand Complex of Lanthanum(III) and Alizarine-Complexone with Fluoride in Micellar Medium for Spectrophotometric Determination of Total Fluorine. Chem. Chem. Technol. 2020, 14, 1–6. https://doi.org/10.23939/chcht14.01.001
  9. [9]   Drobny, J. G. Fluorine-Containing Polymers. In Brydson's Plastics Materials. Eighth Ed.; Gilbert, M., Ed.; Elsevier Ltd. 2017; pp 389–425.
  10. [10] Naren, T.; Jiang, R.; Gu, Q.; Kuang, G.; Chen, L.; Zhang, Q. Fluorinated Organic Compounds as Promising Materials to Protect Lithium Metal Anode: A Review. Mater. Today Energy 2024, 40, 101512. https://doi.org/10.1016/j.mtener.2024.101512
  11. [11] Babudri, F.; Farinola, G. M.; Naso, F.; Ragni, R. Fluorinated Organic Materials for Electronic and Optoelectronic Applications: The Role of the Fluorine Atom. Chem. Commun. 2007, 1003–1022. https://doi.org/10.1039/B611336B
  12. [12] Burdon, J. Electron Transfer in Organic Fluorine Chemistry. J. Fluor. Chem. 1989, 45, 110. https://doi.org/10.1016/S0022-1139(00)84482-6
  13. [13] Hong, G.; Si, C.; Gupta, A. K.; Bizzarri, C.; Nieger, M.; Samuel, I. D. W.; Zysman-Colman, E.; Bräse, S. Fluorinated Dibenzo[a,c]- Phenazine-Based Green to Red Thermally Activated Delayed Fluorescent OLED Emitters. J. Mater. Chem. C 2022, 10, 4757–4766. https://doi.org/10.1039/D1TC04918F
  14. [14] Li, Y.; Liang, J. J.; Li, H. C.; Cui, L. S.; Fung, M. K.; Barlow, S.; Marder, S. R.; Adachi, C.; Jiang, Z. Q.; Liao, L. S. The Role of Fluorine-Substitution on the π-Bridge in Constructing Effective Thermally Activated Delayed Fluorescence Molecules. J. Mater. Chem. C 2018, 6, 5536–5541. https://doi.org/10.1039/C8TC01158C
  15. [15] Guo, Q.; Huang, Z.; Liu, J.; Li, X.; Zheng, Y.; Gao, X.; Liu, H.; Li, J. Positional Effects of Fluorine Substitution on Room Temperature Phosphorescence in Hexaphenylmelamine Derivatives. New J. Chem. 2025, 49, 674–678.https://doi.org/10.1039/D4NJ04627G
  16. [16] Skhirtladze, L.; Leitonas, K.; Bucinskas, A.; Woon, K. L.; Volyniuk, D.; Keruckienė, R.; Mahmoudi, M.; Lapkowski, M.; Ariffin, A.; Grazulevicius, J. V. Turn on of Room Temperature Phosphorescence of Donor-Acceptor-Donor Type Compounds via Transformation of Excited States by Rigid Hosts for Oxygen Sensing. Sensors Actuators B Chem. 2023, 380, 133295. https://doi.org/10.1016/J.SNB.2023.133295
  17. [17] Lee, M. W.; Kim, J. Y.; Ko, M. J. Enhanced Photovoltaic Performance of D-π-A Organic Sensitizers by Simple Fluorination of Acceptor Unit. Org. Electron. 2022, 108, 106606. https://doi.org/10.1016/J.ORGEL.2022.106606.
  18. [18] Chen, J.; Zhu, X.; Zhang, J.; Wei, L. Fluorinated Hole Transport Material Resistant to High Annealing Temperature Applied in Inverted Perovskites Solar Cells. Synth. Met. 2024, 306, 117647. https://doi.org/10.1016/J.SYNTHMET.2024.117647
  19. [19] Stössel, M.; Staudigel, J.; Steuber, F.; Simmerer, J.; Winnacker, A. Impact of the Cathode Metal Work Function on the Performance of Vacuum-Deposited Organic Light Emitting-Devices. Appl. Phys. A 1999, 68, 387–390. https://doi.org/10.1007/S003390050910
  20. [20] Battaglia, M. R.; Buckingham, A. D.; Williams, J. H. The Electric Quadrupole Moments of Benzene and Hexafluorobenzene. Chem. Phys. Lett. 1981, 78, 421–423. https://doi.org/10.1016/0009-2614(81)85228-1
  21. [21] Heidenhain, S. B.; Sakamoto, Y.; Suzuki, T.; Miura, A.; Fujikawa, H.; Mori, T.; Tokito, S.; Taga, Y. Perfluorinated Oligo(p- Phenylene)s: Efficient n-Type Semiconductors for Organic Light- Emitting Diodes. J. Am. Chem. Soc. 2000, 122, 10240–10241. https://doi.org/10.1021/ja002309o
  22. [22] Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly Efficient Organic Light-Emitting Diodes from Delayed Fluorescence. Nature 2012, 492, 234–238. https://doi.org/10.1038/nature11687
  23. [23] Cho, Y. J.; Chin, B. D.; Jeon, S. K.; Lee, J. Y. 20% External Quantum Efficiency in Solution-Processed Blue Thermally Activated Delayed Fluorescent Devices. Adv. Funct. Mater. 2015, 25, 6786– 6792. https://doi.org/10.1002/ADFM.201502995
  24. [24] Zhu, X. D.; Tian, Q. S.; Zheng, Q.; Wang, Y. K.; Yuan, Y.; Li, Y.; Jiang, Z. Q.; Liao, L. S. Deep-Blue Thermally Activated Delayed Fluorescence Materials with High Glass Transition Temperature. J. Lumin. 2019, 206, 146–153.https://doi.org/10.1016/J.JLUMIN.2018.10.017
  25. [25] Hussain, A.; Kanwal, F.; Irfan, A.; Hassan, M.; Zhang, J. Exploring the Influence of Engineering the Linker between the Donor and Acceptor Fragments on Thermally Activated Delayed Fluorescence Characteristics. ACS Omega 2023, 8, 15638–15649. https://doi.org/10.1021/acsomega.3c01098
  26. [26] Paras; Ramachandran, C. N. Tuning of the Singlet–Triplet Energy Gap of Donor-Linker-Acceptor Based Thermally Activated Delayed Fluorescent Emitters. J. Fluoresc. 2024, 34, 1343–1351. https://doi.org/10.1007/S10895-023-03365-2/FIGURES/3
  27. [27] Hladka, I.; Volyniuk, D.; Bezvikonnyi, O.; Kinzhybalo, V.; Bednarchuk, T. J.; Danyliv, Y.; Lytvyn, R.; Lazauskas, A.; Grazulevicius, J. V. Polymorphism of Derivatives of tert-Butyl Substituted Acridan and Perfluorobiphenyl as Sky-Blue OLED Emitters Exhibiting Aggregation Induced Thermally Activated Delayed Fluorescence. J. Mater. Chem. C 2018, 6, 13179–13189. https://doi.org/10.1039/C8TC04867C
  28. [28] Danyliv, I.; Danyliv, Y.; Lytvyn, R.; Bezvikonnyi, O.; Volyniuk, D.; Simokaitiene, J.; Ivaniuk, K.; Tsiko, U.; Tomkeviciene, A.; Dabulienė, A.; et al. Multifunctional Derivatives of Donor-Substituted Perfluorobiphenyl for OLEDs and Optical Oxygen Sensors. Dye. Pigment. 2021, 193, 109493.https://doi.org/10.1016/J.DYEPIG.2021.109493
  29. [29] Danyliv, I.; Danyliv, Y.; Stanitska, M.; Bezvikonnyi, O.; Volyniuk, D.; Lytvyn, R.; Horak, Y.; Matulis, V.; Lyakhov, D.; Michels, D.; et al. Effects of the Nature of Donor Substituents on the Photophysical and Electroluminescence Properties of Derivatives of Perfluorobiphenyl: Donor-Acceptor versus Donor-Acceptor-Donor Type AIEE/TADF Emitters. J. Mater. Chem. C 2024, 12, 2911–2925. https://doi.org/10.1039/D3TC04633H
  30. [30] Skuodis, E.; Bezvikonnyi, O.; Tomkeviciene, A.; Volyniuk, D.; Mimaite, V.; Lazauskas, A.; Bucinskas, A.; Keruckiene, R.; Sini, G.; Grazulevicius, J. V. Aggregation, Thermal Annealing, and Hosting Effects on Performances of an Acridan-Based TADF Emitter. Org. Electron. 2018, 63, 29–40. https://doi.org/10.1016/J.ORGEL.2018.09.002
  31. [31] Ge, X.; Li, G.; Guo, D.; Yang, Z.; Mao, Z.; Zhao, J.; Chi, Z. A Strategy for Designing Multifunctional TADF Materials for High- Performance Non-Doped OLEDs by Intramolecular Halogen Bonding. Adv. Opt. Mater. 2024, 12, 2302535. https://doi.org/10.1002/ADOM.202302535.
  32. [32] Yuan, W.; Jin, G.; Su, N.; Hu, D.; Shi, W.; Zheng, Y. X.; Tao, Y. The Electron Inductive Effect of Dual Non-Conjugated Trifluoromethyl Acceptors for Highly Efficient Thermally Activated Delayed Fluorescence OLEDs. Dye. Pigment. 2020, 183, 108705. https://doi.org/10.1016/J.DYEPIG.2020.108705
  33. [33] Ward, J. S.; Danos, A.; Stachelek, P.; Fox, M. A.; Batsanov, A. S.; Monkman, A. P.; Bryce, M. R. Exploiting Trifluoromethyl Substituents for Tuning Orbital Character of Singlet and Triplet States to Increase the Rate of Thermally Activated Delayed Fluorescence. Mater. Chem. Front. 2020, 4, 3602–3615. https://doi.org/10.1039/D0QM00429D 
  34. [34] Akiyama, M.; Yasuda, Y.; Kisoi, D.; Kusakabe, Y.; Kaji, H.; Imahori, H. The Perfluoroadamantyl Group: A Bulky and Highly Electron-Withdrawing Substituent in Thermally Activated Delayed Fluorescence Materials. Bull. Chem. Soc. Jpn. 2024, 97, uoae025. https://doi.org/10.1093/BULCSJ/UOAE025
  35. [35] Wada, Y.; Kubo, S.; Kaji, H.; Wada, Y.; Kubo, S.; Kaji, H. Adamantyl Substitution Strategy for Realizing Solution-Processable Thermally Stable Deep-Blue Thermally Activated Delayed Fluorescence Materials. Adv. Mater. 2018, 30, 1705641. https://doi.org/10.1002/ADMA.201705641.
  36. [36] Hatakeyama, T.; Shiren, K.; Nakajima, K.; Nomura, S.; Nakatsuka, S.; Kinoshita, K.; Ni, J.; Ono, Y.; Ikuta Hatakeyama, T. T.; Nakajima, K.; et al. Ultrapure Blue Thermally Activated Delayed Fluorescence Molecules: Efficient HOMO–LUMO Separation by the Multiple Resonance Effect. Adv. Mater. 2016, 28, 2777–2781. https://doi.org/10.1002/ADMA.201505491
  37. [37] Wu, S.; Zhang, L.; Wang, J.; Kumar Gupta, A.; Samuel, I. D. W.; Zysman-Colman, E. Merging Boron and Carbonyl Based MR-TADF Emitter Designs to Achieve High Performance Pure Blue OLEDs**. Angew. Chemie Int. Ed. 2023, 62, e202305182. https://doi.org/10.1002/ANIE.202305182
  38. [38] Hua, T.; Li, N.; Huang, Z.; Zhang, Y.; Wang, L.; Chen, Z.; Miao, J.; Cao, X.; Wang, X.; Yang, C. Narrowband Near-Infrared Multiple- Resonance Thermally Activated Delayed Fluorescence Emitters towards High-Performance and Stable Organic Light-Emitting Diodes. Angew. Chemie Int. Ed. 2024, 63, e202318433. https://doi.org/10.1002/ANIE.202318433
  39. [39] Cai, X.; Xu, Y.; Pan, Y.; Li, L.; Pu, Y.; Zhuang, X.; Li, C.; Wang, Y. Solution-Processable Pure-Red Multiple Resonance- Induced Thermally Activated Delayed Fluorescence Emitter for Organic Light-Emitting Diode with External Quantum Efficiency over 20 %. Angew. Chemie Int. Ed. 2023, 62, e202216473. https://doi.org/10.1002/ANIE.202216473
  40. [40] Zhang, Y.; Zhang, D.; Wei, J.; Liu, Z.; Lu, Y.; Duan, L. Multi-Resonance Induced Thermally Activated Delayed Fluorophores for Narrowband Green OLEDs. Angew. Chemie 2019, 131, 17068–17073. https://doi.org/10.1002/ANGE.201911266
  41. [41] Oda, S.; Kawakami, B.; Horiuchi, M.; Yamasaki, Y.; Kawasumi, R.; Hatakeyama, T. Ultra-Narrowband Blue Multi-Resonance Thermally Activated Delayed Fluorescence Materials. Adv. Sci2023, 10, 2205070. https://doi.org/10.1002/ADVS.202205070