Synthesis and Characterization of Functionalized Epoxy/SiO2 Hybrid with Graphene Oxide Nanosheets

2025;
: pp. 108 - 116
1
Centro de Física Aplicada y Tecnología Avanzada, PCeIM, UNAM
2
Centro de Física Aplicada y Tecnología Avanzada, Nanotech Department, UNAM
3
Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México

Nanocomposites were prepared and characterized with a functionalized epoxy resin hybrid (REF) with SiO2 nanoparticles, synthesized by the in-situ sol-gel process, and graphene oxide (GO) nanosheets. The epoxy resin is synthesized with bisphenol A and epichlorohydrin for its subsequent functionalization with abietic acid, providing –OH groups having a greater number of active chemical sites on the surface so that they can join with the SiO2 particles synthesized in situ from TEOS and modified-Hummers GO. The nanocomposites were prepared with REF and a solution of TEOS 40 v/v%; to this hybrid material (HREF), two concentrations of GO at 1 wt% (HREF1) and 5 wt% (HREF5) were added. All materials were characterized by spectroscopic techniques FT-IR and Raman: showing groups -(COOH) from abietic acid, silanol -OH, which will bond with the same groups in the GO sheets. Thermogravimetric analysis (TGA) revealed that SiO2 nanoparticles decorated the basal plane of GO by covalent bonding TGA, increasing the thermal stability at 50 oC, HREF5 being the material with the highest degradation temperature. A homogeneous dispersion of SiO2/GO decorated sheets in the functionalized epoxy was studied using the SEM technique, with HREF1 as the most homogeneous. ASTM D2369 establishes that volatile organic content should not surpass 3.4 g/mL, and the materials prepared have only 0.23 g/mL, which marks the first step to achieve real applications in several industries.

  1. [1]   Ghaemy, M.; Hassanpour-Shahriari, A. Study of the Cure Reaction of DGEBA/ABS Blend in the Presence of Aromatic Diamine Iran. Polym. J. 2008, 17, 395–405.
  2. [2]   Raju, T.; Ding, Y.; He, Y.; Paula, M.; Yang, W.; Tibor, C.; Sabu, T. Miscibility, Morphology, Thermal, and Mechanical Properties of a DGEBA Based Epoxy Resin Toughened with a Liquid Rubber. Polymer 2008, 49, 278–294. https://doi.org/10.1016/j.polymer.2007.11.030
  3. [3]   Frigione, M.; Lettieri, M. Recent Advances and Trends of Nanofilled/Nanostructured Epoxies. Materials (Basel) 2020, 13, 3415. https://doi.org/10.3390/ma13153415
  4. [4]   Shukla, V. Flow Modified Epoxy Resin: The Complete Solution of Aerosol in 2-Pack Epoxy Adhesive. Pigment Resin Technol. 2006, 35, 353-357.https://doi.org/10.1108/03699420610711362
  5. [5]   Brzozowski, Z.; Staszczak, S.; Koziol, P.; Zatorski, W.; Bogdal, D. Development and Characterization of Novel Fire Safe Epoxy Resins. Chem. Chem. Technol. 2009, 3, 269–276. https://doi.org/10.23939/chcht03.04.269
  6. [6]   Sánchez-Soto, M.; Pages, P.; Lacorte, T.; Briceño, K.; Carrasco, F. Curing FTIR Study and Mechanical Characterization of Glass Bead Filled Trifunctional Epoxy Composites. Compos. Sci.Technol. 2007, 67, 1974–1985.https://doi.org/10.1016/j.compscitech.2006.10.006
  7. [7]   Chen, S.; Bo, Y.; Shuxue, Z.; Limin, W. Preparation and Characterization of Scratch and Mar Resistant Waterbone Epoxy/Silica Nanocomposite Clearcoat. J. Appl. Polym. Sci. 2009, 112, 3634–3639.
  8. [8]   Hernandez-Padrón, G. Design of Hybrid Coatings by Sol–Gel Process. In Alternative for Aerospace Use in Mexico; de Space Fostering Latin American Societies, Springer, 2022; pp. 65–83.
  9. [9]   Chen, X.; Wen, S.; Feng T.; Yuan, X. High Solids Organic- Inorganic Hybrid Coatings Based on Silicone-Epoxy-Silica Coating with Improved Anticorrosion Performance for AA2024 Protection. Prog. Org. Coat. 2020, 139, 105374.http://dx.doi.org/10.1016/j.porgcoat.2019.105374
  10. [10] Guo, S.-Y.; Luo, H.-H.; Tan, Z.; Chen, J.-Z.; Zhang, L.; Ren, J.Impermeability and Interfacial Bonding Strength of TiO2-Graphene Modified Epoxy Resin Coated OPC Concrete. Prog. Org. Coat.2021, 151, 106029.http://dx.doi.org/10.1016/j.porgcoat.2020.106029
  11. [11] Ayala-Fonseca, L.A.; Amieva, E. J.-C.; Rodriguez-Gonzalez, C.; Angeles-Chavez, C.; De la Rosa, E.; Castaño, V.M.; Salas, P. Enhanced Raman Effect of Solvothermal Synthesized Reduced Graphene Oxide/Titanium Dioxide Nanocomposites.ChemistrySelect 2020, 5, 3789–3797. https://doi.org/10.1002/slct.202000335
  12. [12] An, J.-E.; Jeong, Y.G. Structure and Electric Heating Performance of Graphene/Epoxy Composite Films. Eur. Polym. J. 2013, 49, 1322–1330.https://doi.org/10.1016/j.eurpolymj.2013.02.005
  13. [13] An, J.; Zhang, Y.; Zhang, X.; He, M.; Zhou, J.; Zhou, J.; Liu, Y.; Chen, X.; Hu, Y.; Song, X., et al. Structure and Properties of Epoxy Resin/Graphene Oxide Composites Prepared from Silicon Dioxide-Modified Graphene Oxide. ACS Omega 2024, 9, 17577–17591. https://doi.org/10.1021/acsomega.4c00707
  14. [14] Papava, G.; Chitrekashvili, I.; Tatrishvili, T.; Gurgenishvili,  M.; Archvadze, K.; Dokhturishvili, N.; Gavashelidze, E.; Gelashvili, N.; Liparteliani, R. Synthesis and Investigation of Properties of Epoxy-Novolac Copolymers Based on Polycyclic Bisphenols of Norbornane Type. Chem. Chem. Technol. 2024, 18, 546–557. https://doi.org/10.23939/chcht18.04.546
  15. [15] Zhou, S.; Yan, J.; Yan, H.; Zhang, Y.; Huang, J.; Zhao, G.; Liu, Y. ZrO2-anchored rGO Nanohybrid for Simultaneously Enhancing the Wear Resistance and Anticorrosion Performance of Multifunctional Epoxy Coatings. Prog. Org. Coat. 2022, 166, 106795. https://doi.org/10.1016/j.porgcoat.2022.106795
  16. [16] Sukhyy, K.; Belyanovskaya, E.; Nosova, A.; Sukha, I.; Sukhyy, M.; Huang, Y.; Kochergin, Y.; Hryhorenko, T. Dynamic Mechanical Properties of Epoxy Composites Modified with Polysulphide Rubber. Chem. Chem. Technol. 2022, 16, 432–439. https://doi.org/10.23939/chcht16.03.432
  17. [17] Aneli, J.; Shamanauri, L.; Markarashvili, E.; Tatrishvili, T.; Mukbaniani, O. Polymer-Silicate Composites with Modified Minerals. Chem. Chem. Technol. 2017, 11, 201–209. https://doi.org/10.23939/chcht11.02.201
  18. [18] Dutta, N.; Nath, S. S.; Dutta, R.; Baishya, J.; Borah, N.; Maji, T. K. A Sustainable Approach to Improve Properties of PVC-CNT Nanocomposites Using Waste Eggshell as Biofiller and Heat Stabilizer. ChemistrySelect 2025, 10, e202405963. https://doi.org/10.1002/slct.202405963
  19. [19] Song, Q.; Wang, W.; Li, Y.; Yang, X.; Yu, W.; Yu, D.; Zhu, X.; Du, S.; Qiu, J.; Ren, P. Epoxy Resin/(α-Al2O3/ZrO2) Nanocomposite for Antifriction and Corrosion Resistance. ACS Appl. Nano Mater. 2024, 7, 13756–13764.https://doi.org/10.1021/acsanm.4c02473
  20. [20] Zhil’tsova, S.; Brovko, O.; Leonova, N. Viscoelastic Properties of Amine-Cured Epoxy-Titania Composites Obtained by the Sol- Gel Method. Chem. Chem. Technol. 2018, 12, 202–206. https://doi.org/10.23939/chcht12.02.202
  21. [21] Reyes-Tesillo, B.G.; López-Campos, J.E.D.; Mojica-Gómez, J.; Ferrer-Pérez, J.A.; Hernández-Padrón, G. Effect of SiO2 Concentration on the Mechanical and Anticorrosive Properties of the Hybrid PMMA/SiO2 Coating Synthesized in situ by Sol-Gel Process. J. Phys.: Conf. Ser. 2024, 2804, 012002. https://doi.org/10.1088/1742-6596/2804/1/012002
  22. [22] López-Campos, J.E.D.; Mojica-Gómez, J.; Maciel-Cerda, A.; Castaño, V.M.; Hernandez-Padron, G. Hybrid Epoxy-SiO2 /GO Nanosheets Anti-Corrosive Coating for Aeronautic Aluminum Al6061-T5. J. Coat. Technol. Res. 2023, 21, 559–574.http://dx.doi.org/10.1007/s11998-023-00838-8
  23. [23] Barbakadze, K.; Brostow, W.; Hnatchuk, N.; Lekishvili, G.; Arziani, B.; Zagórski, K.; Lekishvili, N. Antibiocorrosive Hybrid Materials with High Durability. Chem. Chem. Technol. 2021, 15, 500–511. https://doi.org/10.23939/chcht15.04.500
  24. [24] Hummers, W.S.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.http://dx.doi.org/10.1021/ja01539a017
  25. [25] Braun, D.; Cherdron, H.; Rehahn, M.; Ritter H.; Voit, B. Epoxy Resins; de Polymer Synthesis: Theory and Practice; Springer, 2015; pp. 318-322.
  26. [26] Hernández-Padrón, G.; García-Garduño, M. Sol-Gel, One Technology by Produced Nanohybrid with Anticorrosive Properties. Physics Procedia 2013, 48, 102–108. https://doi.org/10.1016/j.phpro.2013.07.017
  27. [27] Drewniak, S.; Muzyka, R.; Stolarczyk, A.; Pustelny, T.; Setkiewicz, M. Studies of Reduced Graphene Oxide and Graphite Oxide in the Aspect of Their Possible Application in Gas Sensors.Sensors 2016, 16, 103. https://doi.org/10.3390/s16010103
  28. [28] Chen, P.-H.; Sie, M.-C.; Jeng, P.-D.; Wu, R.-C.; Wang, C.-B. Graphene Sponge as an Efficient and Recyclable Oil Absorbent. AIP Conf. Proc. 2017, 1877, 030005.https://doi.org/10.1063/1.4999861
  29. [29] Ramirez-Palma, M. T.; Hernández-Padron, G.; Mójica-Gómez, J.; Rojas-Gonzales, F.; Castaño, V. M. Nanostructured Epoxy-Based Anticorrosive Coatings. Surf. Rev. Lett. 2020, 27, 1950202. https://doi.org/10.1142/S0218625X19502020
  30. [30] Araki, W.; Adachi, T. Viscoelasticity of Epoxy Resin/Silica Hybrid Material Prepared via Sol-Gel Process: Considered in Terms of Morphology. J. Appl. Polym. Sci. 2008, 107, 253–261. http://dx.doi.org/10.1002/app.27019
  31. [31] ASTM D-2369-20. Standard Test Method for Volatile Content of Coatings.