The development of next-generation cellular communications requires materials with high dielectric properties at high frequencies. SrCoV₂O₇ ceramics, synthesized using Ultra Low-Temperature Co-Fired Ceramic (ULTCC) technology, offer promising characteristics. This study analyzed their crystal structure using X-ray diffraction, SEM microscopy, and energy dispersive spectroscopy. The results confirmed a single-phase monoclinic structure (P 1 21/c 1) with lattice parameters a=6.8360(7) Å, b=14.823(2) Å, c=11.271(1) Å, β=99.4610(5)°. The material exhibits potential for microwave applications, including resonators, antennas, and filters, due to its dielectric properties and compatibility with aluminium electrodes.
[1] Ahmed, A. M.; Hasan, S. A.; Majeed, S. A. 5G Mobile Systems, Challenges and Technologies: A Survey. J. Theor. Appl. Inf. Technol. 2019, 97, 3214–3226.
[2] Varghese, J.; Ramachandran, P.; Sobocinski, M.; Vahera, T.; Jantunen, H. ULTCC Glass Composites Based on Rutile and Anatase with Cofiring at 400°C for High Frequency Applications. ACS Sustain. Chem. Eng. 2019, 7, 4274–4283. https://doi.org/10.1021/acssuschemeng.8b06048
[3] Liu, J.; Liu, B.; Hu, C.; Zhou, Q.; Song, K. Ultra-Low Temperature Sintered (1-x)BaV2O6-xLiF Ceramics for ULTCC and 5G Millimeter-Wave Antenna Applications. J. Eur. Ceram. Soc.2023, 43, 6130–6136. https://doi.org/10.1016/j.jeurceramsoc.2023.07.006
[4] Deng, Y.; Yao, P.; Li, B. A Novel Ultra-Low Temperature Sintered Li2CO3 Doped Ba3V2O8 Microwave Ceramics. Mater. Lett. 2021, 285, 129125. https://doi.org/10.1016/j.matlet.2020.129125
[5] Huang, C.L.; Chiang, P.E.; Hsu, T.H. Effect of a Minute Substitution on the Structure and Microwave Dielectric Properties of Novel LiCoVO4 Ceramics for ULTCC Applications. J. Asian Ceramic Soc. 2021, 9, 1154–1164. https://doi.org/10.1080/21870764.2021.1945746
[6] Suresh, E.; Ratheesh, R. Structure and Microwave Dielectric Properties of Glass Free Low Temperature Co-Firable SrMV2O7 (M= Mg, Zn) Ceramics. J. Alloys Compd. 2019, 808, 151641. https://doi.org/10.1016/j.jallcom.2019.07.353
[7] Huang, C.-L.; Huang, J.-L.; Tsai, M.-H. Ultra-Low Temperature Sintering and Temperature Stable Microwave Dielectrics of (Mg1-xZnx)V2O6 (x=0-0.09) Ceramics. J. Asian Ceramic Soc. 2021, 9, 106–112. https://doi.org/10.1080/21870764.2020.1848037
[8] Zou, A.; Gao, W.; Mu, Y.; Li, L.; Wang, J.; Han, J. Microwave Dielectric Properties of a Novel Li2O-Al2O3-B2O3 Glass-Ceramic for ULTCC Application. Ceram. Int. 2023, 49, 35274–35284. https://doi.org/10.1016/j.ceramint.2023.08.200
[9] Yu, M.; Tang, Y.; Li, J.; Fang, W.; Duan, L.; Fang, L. Microwave Dielectric Properties and Chemical Compatibility with Alumina Electrode of Two Novel Ultra-Low Temperature Firing ATeMoO6 (A=Mg, Zn) Ceramics. Ceram. Int. 2020, 46, 25619–25625. https://doi.org/10.1016/j.ceramint.2020.07.036
[10] Huang, Y.-T.; Huang, C.-C.; Hsu, T.-H.; Huang, C.-L. Ultra- Low Temperature Sintering and Microwave Dielectric Properties of Mg-Substituted SrCoV2O7 Ceramics. J. Asian Ceramic Soc. 2022, 10, 188–195. https://doi.org/10.1080/21870764.2022.2031535
[11] Bondarenko, I. N.; Gorbenko, Е. А.; Krasnoshchok, V. I. Microwave Switch Based on a Waveguide T-Junction for a Com- pression Resonant Pulse Former. Telecommun. Radio Eng. 2017, 76, 469–475. https://doi.org/10.1615/TelecomRadEng.v76.i6.20
[12] Bondarenko, I.; Galich, A. Resonant Irregular Hybrid Structures. 2016 13th International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET) 2016, 1, 183–185. https://doi.org/10.1109/TCSET.2016.7452007
[13] Grigorenko, G. M.; Adeeva, L. I.; Tunik, A. Y.; Korzhik, V. N.; Doroshenko, L. K.; Titkov, Y. P.; Chaika, A. A. Structu- rization of Coatings in the Plasma Arc Spraying Process Using B4C + (Cr, Fe)(7)C-3-Cored Wires. Powder Metall Met Ceram. 2019,58, 312–322. https://doi.org/10.1007/s11106-019-00080-1
[14] Grigorenko, G. M.; Adeeva, L. I.; Tunik, A. Y.; Korzhik, V. N.; Karpets, M. V. Plasma Arc Coatings Produced from Powder- Cored Wires with Steel Sheaths. Powder Metall. Met. Ceram. 2020, 59, 318–329. https://doi.org/10.1007/s11106-020-00165-2
[15] Han, J.; Shi, Y.; Guo, J. C.; Volodymyr, K.; Le, W. Y.; Dai, F. X. Porosity Inhibition of Aluminum Alloy by Power-Modulated Laser Welding and Mechanism Analysis. J. Manufact. Proces. 2023, 102, 827–838. https://doi.org/10.1016/j.jmapro.2023.08.001
[16] Montayev, S. A.; Ristavletov, R. A.; Omarov, B. A.; Dosov,Z.; Usenkulov, Z. A. Use of Granulated Metallurgy Slag in the Raw Mix for Producing Ceramic Paving Stones: Insights from an Experiment in Kazakhstan. ISVS e-journal 2023, 10, 91–105.
[17] Khardazi, S.; Zaitouni, H.; Neqali, A.; Mezzane, D.; Amjoud, M.; Abkhar, Z.; Lyubchyk, S.; Rožič, B.; Kutnjak, Z.; Lukyanchuk, I. Enhancement of the Electrocaloric Effect in the 0.4BCZT- 0.6BTSn Ceramic Synthesized by Sol-Gel Route. Mater. Res. Expr. 2023, 10, 125509. https://doi.org/10.1088/2053-1591/ad1773
[18] Khardazi, S.; Zaitouni, H.; Neqali, A.; Lyubchyk, S.; Mezzane, D.; Amjoud, M.; Choukri, E.; Kutnjak, Z. Enhanced Thermal Stability of Dielectric and Energy Storage Properties in 0.4BCZT-0.6BTSn Lead-Free Ceramics Elaborated by Sol-Gel Method. J. Phys. Chem. Sol. 2023, 177, 111302. https://doi.org/10.1016/j.jpcs.2023.111302
[19] Luniov, S. V. Calculation of Electron Mobility for the Strained Germanium Nanofilm. J. Nano- Electron. Phys. 2019, 11, 02023. https://doi.org/10.21272/jnep.11(2).02023
[20] Feng, X. D.; Shi, Y.; Zhang, W. Z.; Korzhyk, V. Hydrogen Embrittlement Failure Behavior of Fatigue-Damaged Welded TC4 Alloy Joints. Crystals 2023, 13, 512. https://doi.org/10.3390/cryst13030512
[21] Sydorchuk, P.; Khlyap, G.; Andrukhiv, A. Growth and Some Properties of Heterostructures Based on New Narrow-Gap Semiconductor ZnCdHgTe. Cryst. Res. Technol. 2001, 36, 361–369. https://doi.org/10.1002/1521-4079(200106)36:4/5<361::AID-CRAT361>3.0.CO;2-5
[22] Nemoshkalenko, V. V.; Borisenko, S. V.; Uvarov, V. N.; Yaresko, A. N.; Vakhney, A. G.; Senkevich, A. I.; Borisenko, T. N.; Borisenko, V. D. Electronic Structure of the R2Ti2O7 (R =S m-Er, Yb, Lu) Oxides. Physic. Rev. B 2001, 63, 075106. https://doi.org/10.1103/PhysRevB.63.075106
[23] Tuan, P. L.; Kulik, M.; Stef, M.; Phuc, T. V.; My, N. T. B.; Zelenyak, T. Y.; Buse, G.; Racu, A.; Doroshkevich, A.; Khiem, H.; et al. An Examination on the Porosity of ErF3 Doped CaF2 Crystal Using the Rutherford Back-Scattering Method. Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At. 2024, 547, 165178. https://doi.org/10.1016/j.nimb.2023.165178
[24] Bacherikov, Y. Yu.; Okhrimenko, O. B.; Pekur, D. V.; Ponomarenko, V. V.; Sadigov, A.; Lyubchyk, S. B.; Lyubchyk, S. I. Multifunctional Spectrophotometric Sensor Based on Photosensitive Capacitor. Semicond. Phys. Quantum Electron. Optoelectron. 2024, 27, 495–501. https://doi.org/10.15407/spqeo27.04.495
[25] Bondarenko, I. N.; Vasiliev, Yu. S.; Zhizhiriy, A. S.; Ishenko, A. L. Arrangement Device for Monitoring of Parameters of Microwave Resonators. In 2010 20th International Crimean Conference “Microwave & Telecommunication Technology”; 13– 17 Sept. 2010; pp. 969–970.https://doi.org/10.1109/crmico.2010.5632420
[26] Dai, Z. C.; Tan, M.; Yang, Y.; Liu, X.; Wang, R.; Su, Y. X. Massive Coordination of Distributed Energy Resources in VPP: A Mean Field RL-Based Bi-Level Optimization Approach. IEEE Trans. Cybern. 2025, 55, 1332–1346.https://doi.org/10.1109/TCYB.2024.3525121
[27] Sun, S.; Zhang, Q.; Dai, Y.; Pei, X. Enhanced Microwave Dielectric Properties of Bi6B10O24 Ceramics as Ultra-Low Temperature Co-Fired Ceramics Materials. J. Mater. Sci. Mater. Electron. 2022, 33, 13604–13613. https://doi.org/10.1007/s10854-022-08295-6
[28] Shuzhao, H.; Zhou, D.; Pang, L.; Dang, M.-Z.; Sun, S.-K.; Zhou, T.; Trukhanov, S.; Trukhanov, A.; Sombra, S.; Li, Q.; et al. Ultra-Low Temperature Co-Fired Ceramics with Adjustable Microwave Dielectric Properties in Na2O-Bi2O3-MoO3 Ternary System: A Comprehensive Study. J. Mater. Chem. C Mater. 2022, 10, 2008–2016. https://doi.org/10.1039/D1TC05557G
[29] Zang, M.; Zheng, M.; Zhu, M.; Hou, Y. Low-Temperature Sintering and Microwave Dielectric Properties of CaMoO4 Ceramics for LTCC and ULTCC Applications. J. Eur. Ceram. Soc. 2023, 44, 293–301.https://doi.org/10.1016/j.jeurceramsoc.2023.09.029
[30] Li, F.; Li, Y.-X.; Li, Y.; Feng, X.; Zhang, J.; Liu, X.; Lu, Y.; Wang, S.; Liao, Y.; Tang, T.; et al. Enhanced Na+-Substituted Li2Mg2Mo3O12 Ceramic Substrate Based on Ultra-Low Temperature Co-Fired Ceramic Technology for Microwave and Terahertz Polarization-Selective Functions. J. Eur. Ceram. Soc. 2022, 43, 384–391. https://doi.org/10.1016/j.jeurceramsoc.2022.10.031
[31] Yoon, S. O.; Hong, S.; Cho, H.-H.; Kim, S. Microwave Dielectric Properties of Ultra-Low Temperature Co-Firable Ba3V4O13-BaV2O6 Ceramics. J. Korean Inst. Electr. Electronic Mater. Eng. 2021, 34, 342–347.https://doi.org/10.4313/JKEM.2021.34.5.342
[32] Li, C.; Liu, Y.; Chi, M.; Luo, X.; Liu, B.; Mao, M.; Barzegar- Bafrooei, H.; Wang, G.; Taheri-Nassaj, E.; Song, K. ULTCC Post- Annealing Cold Sintering Densification Process, Microwave Dielectric Properties of Zn3B2O6 Ceramics. Mater. Today. Commun. 2022, 33, 104997. https://doi.org/10.1016/j.mtcomm.2022.104997
[33] Khan, R.; Khan, I.; Ali, B.; Muhammad, R.; Samad, A.; Shah, A.; Song, K.; Wang, D. Structural, Dielectric, Optical, and Electrochemical Performance of Li4Mo5O17 for ULTCC Applications. Mater. Res. Bull. 2022, 160, 112142. https://doi.org/10.1016/j.materresbull.2022.112142
[34] Olszewska-Placha, M.; Varghese, J.; Szwagierczak, D.; Birgit, M.; Ziesche, S.; Rudnicki, J.; Synkiewicz-Musialska, B. Bulk Glass- Ceramic Composites and ULTCC Substrates for Microwave and Millimetre-Wave Applications. Mater. Res. Bull. 2024, 177, 112862. https://doi.org/10.1016/j.materresbull.2024.112862
[35] Zhai, S.; Liu, P.; Wu, S. Novel Ultra-Low Loss and Low- Fired Li8MgxTi3O9+xF2 Microwave Dielectric Ceramics for Resonator Antenna Applications. J. Eur. Ceram. Soc. 2023, 43, 3331–3337. https://doi.org/10.1016/j.jeurceramsoc.2023.01.041
[36] Ding, L.; Heng, B.; Feng, X.; Bian, W.; Zhu, H.; Wang, L.; Hou, Y.; Zhang, Q. One-Step Synthesis of Li2Mg2Mo3O12- (Li1/2Bi1/2)MoO4 Composite Ceramics with a Stable Temperature Coefficient for ULTCC Applications. J. Mater. Sci. Mater. Electron. 2024, 35, 908. https://doi.org/10.1007/s10854-024-12647-9
[37] Szwagierczak, D.; Synkiewicz-Musialska, B.; Kulawik, J.; Czerwińska, E.; Pałka, N. Ultra-Low Temperature Cofired Ceramics Based on Li2WO4 as Perspective Substrate Materials for Terahertz Frequencies. J. Adv. Ceram. 2023, 12, 526–538. https://doi.org/10.26599/JAC.2023.9220701
[38] Unnimaya, A. N.; Suresh, E. K.; Ratheesh, R. Crystal Structure and Microwave Dielectric Properties of New Alkaline Earth Vanadate A4V2O9 (A=Ba, Sr, Ca, Mg and Zn) Ceramics for LTCC Applications. Mater. Res. Bull. 2017, 88, 174–181. https://doi.org/10.1016/j.materresbull.2016.12.026
[39] Zhou, D.; Guo, D.; Li, W.-B.; Pang, L.-X.; Yao, X.; Wang,D.-W.; Reaney, I. M. Novel Temperature Stable High-εr Microwave Dielectrics in the Bi2O3-TiO2-V2O5 System. J. Mater. Chem. C 2016, 4, 5357–5362. https://doi.org/10.1039/C6TC01431C
[40] Savvova, O.; Shymon, V.; Fesenko, O.; Babich, O.; Alfeldii, S. Development of Strengthened Bioactive Calcium Phosphate- Silicate Glass Ceramics for Bone Implants. Chem. Chem. Technol. 2020, 14, 109–115. https://doi.org/10.23939/chcht14.01.109
[41] Zelenskii, O.; Shmalko, V.; Panov, E.; Shylovych, T.; Shylovych, Y.; Rudkevich, M. Modification of Ceramics and Ceramic Glazers with Carbon Nanoadditives, and Properties of the Modified Materials. Chem. Chem. Technol. 2019, 13, 247–253. https://doi.org/10.23939/chcht13.02.247