Oxidation Kinetics of a Commercial Diesel Fuel and Its Fraction in the Presence of Metal-Containing Multi-Walled Carbon Nanotube Admixtures

2025;
: pp. 385 - 394
1
Named after academician M.Naghiyev Institute of Catalysis and Inorganic Chemistry, Ministry of Science and Education of the Republic of Azerbaijan
2
Technical University Berlin, Germany
3
Named after academician M.Naghiyev Institute of Catalysis and Inorganic Chemistry, Ministry of Science and Education of the Republic of Azerbaijan
4
Named after academician M.Naghiyev Institute of Catalysis and Inorganic Chemistry, Ministry of Science and Education of the Republic of Azerbaijan
5
Azerbaijan Medical University

This study is to evaluate the extent of aerobic oxidation of diesel fuel fractions in the presence of Fe-Co-containing multi-walled carbon nanotubes (Fe-Co@MWCNT). Fe-Co clusters located in the nanocarbon channels and outside actively catalyse the chain oxidation. Results suggest selecting efficient nanocatalytic systems for the oxidative conversion of multicomponent hydrocarbon feedstocks.

[1] Stahl, S. S.; Alsters, P. L. Liquid phase aerobic oxidation catalysis: industrial applications and academic perspectives; Weinheim: Wiley-VCH, 2016.

[2] Suresh, A. K.; Sharma, M. M.; Sridhar, T. Engineering Aspects of Industrial Liquid-Phase air Oxidation of Hydrocarbons. Ind. Eng. Chem. Res. 2000, 39, 3958–3997. https://doi.org/10.1021/ie0002733

[3] Mills, P. L.; Chaudhari, R. V. Reaction Engineering of Emerging Oxidation  Processes. Catal. Today 1999, 48, 17–29. https://doi.org/10.1016/S0920-5861(98)00354-X

[4] Sheldon, R. A.; Dakka, J. Heterogeneous Catalytic Oxidations in the Manufacture of Fine Chemicals. Catal. Today 1994, 19, 215– 245. https://doi.org/10.1016/0920-5861(94)80186-X

[5] Zhai, Y.; Zhu, Z.; Dong, S. Carbon Based Nanostructures for Advanced Catalysis. Chem. Cat. Chem. 2015, 7, 2806–2815. https://doi.org/10.1002/cctc.201500323

[6] Serp, P.; Castillejos, E. Catalysis in Carbon Nanotubes. Chem. Cat. Chem. 2010, 2, 41–47. https://doi.org/10.1002/cctc.200900283

[7] Yan, Y.; Miao, J.; Yang, Z.; Xiao, F.X.; Yang, H. B.; Liu, B.; Yang, Y. Carbon Nanotube Catalysts: Recent Advances in Synthesis, Characterization and Applications. Chem. Soc. Rev. 2015, 44, 3295–3346. https://doi.org/10.1039/C4CS00492B

[8] Pyshyev, S.; Bratychak, M. Study on Hydrodynamic Parameters of the Oxidative Desulfurization of High Sulfur Straight-Run Oil Fractions. Chem. Chem. Technol. 2020, 14, 403–411. https://doi.org/10.23939/chcht14.03.403

[9] Pyshyev, S. Application of Non-Catalytic Oxidative Desulphurization Process for Obtaining Diesel Fuels with Improved Lubricity. Chem. Chem. Technol. 2012, 6, 229–235. https://doi.org/10.23939/chcht06.02.229

[10] Pyshyev, S.; Korchak, B.; Miroshnichenko, D.; Nyakuma, B. B. Study on Chemistry of Oxidative Desulfurization Process of High Sulfur Straight-Run Oil Fraction. Chem. Chem. Technol. 2021, 15, 414–422. https://doi.org/10.23939/chcht15.03.414

[11] Zeynalov, B. Synthetic naphthenic acids; Elm Press, 1996.

[12] Efendiyeva, L. M.; Abbasov, V. M.; Ismailov, E. H.; Nuriyev, L. G.; Suleymanova S. A.; Aliyeva N. M. Liquid-Phase Oxidation of Naphthenic Petroleum Hydrocarbons in the Presence of Chromium and Cobalt Nanocomplexes. Theor. Exp. Chem. 2017, 52, 375–382. https://doi.org/10.1007/s11237-017-9493-y

[13] Efendieva, L. M.; Aliyeva, L. I.; Ismailov, E. G.; Nuriev, L. G.; Suleimanova, S. A.; Abbasov, V. M. Aerobic Oxidation of a Naphtene-Paraffin Concentrate in the Presence of Reduced Graphene Oxide. Pet. Chem. 2018, 58, 542–547. https://doi.org/10.1134/S0965544118070022

[14] Liao, S.; Peng, F.; Yu, H.; Wang, H. Carbon Nanotubes as Catalyst for the Aerobic Oxidation of Cumene to Cumene Hydroperoxide. Appl. Catal. A: Gen. 2014, 478, 1–8. https://doi.org/10.1016/j.apcata.2014.03.024

[15] Emanuel, N. The oxidation of hydrocarbons in the liquid- phase, 1st Ed; Pergamon Press, 1965. https://doi.org/10.1016/C2013-0-01795-1

[16] Luo, J.; Peng, F.; Yu, H.; Wang, H.; Zheng, W. Aerobic Liquid‐Phase Oxidation of Ethylbenzene to Acetophenone Catalyzed by Carbon Nanotubes. Chem. Cat. Chem. 2013, 5, 1578– 1586. https://doi.org/10.1002/cctc.201200603

[17] Yu, H.; Peng, F.; Tan, J.; Hu, X.; Wang, H.; Yang, J.; Zheng, W. Selective Catalysis of the Aerobic Oxidation of Cyclohexane in the Liquid Phase by Carbon Nanotubes. Angew. Chem. 2011, 123, 4064–4068. https://doi.org/10.1002/ange.201007932

[18] Yang, X.; Wang, H.; Li, J.; Zheng, W.; Xiang, R.; Tang, Z.; Yu, H.; Peng, F. Mechanistic Insight into the Catalytic Oxidation of Cyclohexane over Carbon Nanotubes: Kinetic and in situ Spectroscopic Evidence. Chem. Eur. J. 2013, 19, 9818–9824. https://doi.org/10.1002/chem.201300676

[19] Nejabat, F.; Rayati, S. Surface Modification of Multi-Walled Carbon Nanotubes to Produce a New Bimetallic Fe/Mn Catalyst for the Aerobic Oxidation of Hydrocarbons. J. Ind. Eng. Chem. 2019, 69, 324–330. https://doi.org/10.1016/j.jiec.2018.09.044

[20] Mu, C.; Huang, K.; Cheng, T.; Wang, H.; Yu, H.; Peng, F. Ni Foams Decorated with Carbon Nanotubes as Catalytic Stirrers for Aerobic Oxidation of Cumene. Chem. Eng. J. 2016, 306, 806–815. https://doi.org/10.1016/j.cej.2016.08.016

[21] Zeynalov, E. B.; Naghiev, Ya. M.; Huseinov, A. B.; Nadiri, M. I.; Guliev, A. D.; Salmanova, N. I; Abbasov, M. X.; Nazarov, F. B.; Apaeva, R. R. Aerobic-Peroxide Oxidation of Naphthalene in the Presence of Transition Metal on a Nan1ocarbon Carrier. SOCAR Proceedings 2022, 4, 134–141. https://doi.org/10.5510/OGP20220400794

[22] Luo, J.; Yu, H.; Wang, H.; Peng, F. Enhancing the Catalytic Activity of Carbon Nanotubes by Filled İron Nanowires for Selective Oxidation of Ethylbenzene. Catal. Commun. 2014, 51, 77–81. https://doi.org/10.1016/j.catcom.2014.03.031

[23] Shi, Z. Q.; Dong, Z. P.; Sun, J.; Zhang, F. W.; Yang, H. L.; Zhou, J. H.; Li, R. Filled Cobalt Nanoparticles into Carbon Nanotubes as a Rapid and High-Efficiency Catalyst for Selective Epoxidation of Styrene with Molecular Oxygen. Chem. Eng. J. 2014, 237, 81–87. https://doi.org/10.1016/j.cej.2013.09.107

[24] Zeynalov, E.; Nagiyev, Y.; Huseynov, A.; Huseynov, E.; Salmanova, N.; Abdurakhmanova, N. Impact of as-Prepared and Purified Multi-Walled Carbon Nanotubes on the Liquid-Phase Aerobic Oxidation of Hydrocarbons. Chem. Chem. Technol. 2021, 15, 479–485. https://doi.org/10.23939/chcht15.04.479

[25] Wang, Z.; Wu, Y.; Wu, C.; Xie, J.; Gu, X.; Yu, P.; Rong, J. Electrophilic Oxygen on Defect-Rich Carbon Nanotubes for Selective Oxidation of Cyclohexane. Catal. Sci. Technol. 2020, 10, 332–336. https://doi.org/10.1039/C9CY02023C

[26] Yang, X.; Li, Y.; Yu, H.; Gui, X.; Wang, H.; Huang, H.; Peng, F. Enhanced Catalytic Activity of Carbon Nanotubes for the Oxidation of Cyclohexane by Filling with Fe, Ni, and FeNi Alloy Nanowires. Aust. J. Chem. 2015, 69, 689–695. https://doi.org/10.1071/CH15516

[27] Yang, X.; Yu, H.; Peng, F.; Wang, H. Confined İron Nanowires Enhance the Catalytic Activity of Carbon Nanotubes in the Aerobic Oxidation of Cyclohexane. ChemSusChem 2012, 5, 1213–1217. https://doi.org/10.1002/cssc.201100807

[28] Mustafayeva, N.A. Fe-Containing Carbon Nantubes as Catalysis in the Aerobic Oxidation Reactions of Decaline and Tetradecane. Azerbaijan Chem. J. 2022, 3, 87–92. https://doi.org/10.32737/0005-2531-2022-3-87-92

[29] Xiao, J.; Pan, X.; Guo, S.; Ren, P.; Bao, X. Toward Fundamentals of Confined Catalysis in Carbon Nanotubes. J. Am. Chem. Soc. 2015, 137, 477–482. https://doi.org/10.1021/ja511498s

[30] Melchionna, M.; Marchesan, S.; Prato, M.; Fornasiero, P. Carbon Nanotubes and Catalysis: The Many Facets of a Successful Marriage. Catal. Sci. Technol. 2015, 5, 3859–3875. https://doi.org/10.1039/C5CY00651A

[31] Zeynalov, E. B.; Taghiyev, D. B.; Naghiyev, Y. M.; Huseynov, E. R.; Nazarov, F. B.; Huseynov, A. B. Substances content of the diesel fuel and its dearomatized and dewaxed fractions; “Füyuzat” Publishing House, 2022.

[32] Zeynalov, E. B.; Taghiev, D. B.; Naghiev, Ya. M.; Zeynalov, S. B.; Nazarov, F. B.; Huseinov, E. R.; Huseinov, A. B. Components of Diesel Fuel and their Exposure to the Processes of Aerobic Oxidation. Azerbaijan Oil Industry 2022, 2, 55–59. https://doi.org/10.37474/0365-8554/ 2022-02-55-59

[33] Zeynalov, E. B.; Allen, N. S. Simultaneous Determination of the Content and Activity of Sterically Hindered Phenolic and Amine Stabilizers by Means of an Oxidative Model Reaction. Polym. Degrad. Stab. 2004, 85, 847–853. https://doi.org/10.1016/j.polymdegradstab.2004.03.021

[34] Zeynalov, E. B. Anticatalysts of thermo-oxidative degradation of polymeric materials; Еlm Press, 2014.

[35] Pan, X.; Bao, X. The Effects of Confinement inside Carbon Nanotubes on Catalysis. Acc. Chem. Res. 2011, 44, 553–562. https://doi.org/10.1021/ar100160t

[36] Su, Y.; Chen, Z.; Huang, J.; Wang, H.; Yu, H.; Zhang, Q.; Peng, F. Confined Cobalt on Carbon Nanotubes in Solvent‐free Aerobic Oxidation of Ethylbenzene: Enhanced Interfacial Charge Transfer. ChemCatChem 2022, 14, e202101378. https://doi.org/10.1002/cctc.202101378