The paper substantiates the selection of a polymer and filler based on aromatic polyamide to create a material of friction pairs that operate in heavy-duty friction and sealing units of up-to-date vehicles and machinery. The effect of load and sliding speed on the tribological behavior of the initial aromatic polyamide and filled 15%-aramid fiber was studied. As a result of tribological studies, the terminal operating conditions of products made of initial aromatic polyamide and a composite based thereon, filled with aramid fiber, have been determined. The basic physical and mechanical properties of the materials under study have been determined, and it is established that the introduction of aramid fiber into the aromatic polyamide contributes to a 10-15% reduction in the level of the properties thereof due to the occurrence of micro- and macrodefects of its structure.
[1] Muhammad, A.; Rahman, Md.; Baini, R.; Bin Bakri, M. |8-Applications of Sustainable Polymer Composites in Automobile and Aerospace Industry. In Advances in Sustainable Polymer Composites Edition, 1th ed.; Woodhead Publishing Series in Composites Science and Engineering, 2021; 185207. https://doi.org/10.1016/B978-0-12-820338-5.00008-4
[2] Weber, A. The Growing Role of Plastics in Aerospace [Online]. https://www.assemblymag.com/articles/94125-the-growing-role-of- plastics-in-aerospace-assembly (accessed Feb 1, 2018).
[3] Dzhur, Ye. O.; Kuchma, L. D.; Manko, T. A. Polimerni kompozytsiini materialy v raketno-kosmichnii tekhnitsi; Vyshcha osvita: Kyiv, 2003.
[4] Kobets, A. S.; Derkach, O. D.; Kabat O. S.; Volovyk, I. A.; Kovalenko, V. L.; Kotok, V. A.; Verbitskiy V. V. Investigation Friction and Wear of Constructional Plastics Based on Aromatic Polyamide. ARPN J. Eng. Appl. Sci. [Online] 2020, 5, 1189–1195. (accessed May 10, 2020) https://www.arpnjournals.com/jeas/volume_10_2020.htm
[5] Kabat, O.; Sytar, V.; Derkach, O.; Sukhyy, K. Рolymeric Composite Materials of Tribotechnical Purpose with a High Level of Physical, Mechanical and Thermal Properties. Chem. Chem. Technol. 2021, 15, 543–550. https://doi.org/10.23939/chcht15.04.543
[6] Gupta, R. K. Specialty Polymers: Fundamentals, Properties, Applications and Advances; Taylor & Francis, 2023.
[7] Advanced Polymer Materials and Technologies: Recent Trends and Current Priorities; Levytskyi, V.; Plavan, V.; Skorokhoda, V.; Khomenko V., Eds.; Lviv: Lviv Polytechnic National University, 2022.
[8] Deleanu, L.; Botan, M.; Georgescu, K. Tribological Behavior of Polymers and Polymer Composites. In Tribology in Materials and Manufacturing - Wear, Friction and Lubrication; Patnaik, A.; Singh, T.; Kukshal, V., Eds.; 2020. https://doi.org/10.5772/intechopen.94264
[9] Friedrich, K. Polymer Composites for Tribological Applications. Adv. Ind. Eng. Polym. Res. 2018, 1, 3–39. https://doi.org/10.1016/j.aiepr.2018.05.001
[10] Kabat, O. S.; Kharchenko, A. D.; Derkach, V. V.; Artemchuk, V. V.; Babenko, V. H. Polimerni materyaly na osnovi ftoroplasta ta metod yikh otrymannia. Vopr. Khimii Khimicheskoi Tekhnologii 2019, 3, 116–122. http://doi.org/10.32434/0321-4095-2019-124-3- 116-122
[11] Natarajan, E. S.; Santhosh, M. S.; Markandan, K.; Sasikumar, R. C.; Saravanakumar, N. D.; Anto Dilip, A. Mechanical and Wear Behaviour of PEEK, PTFE and PU: Review and Experimental Study. J. Polym. Eng. 2022, 42, 407–417. http://doi.org/10.1515/polyeng-2021-0325
[12] Abadie, M. J. High Performance Polymers – Polyimides Based – From Chemistry to Applications. Rijeka: InTech, 2012. http://doi.org/10.5772/2834
[13] Koike, H.; Kida, K.; Mizobe, R. Wear of Hybrid Radial Bearings (PEEK ring-PTFE Retainer and Alumina Balls) under Dry Rolling Contact. Tribol. Int. 2015, 90, 77–83. https://doi.org/10.1016%2Fj.triboint.2015.04.007
[14] Wang, Z.; Gao, D. Comparative Investigation on the Tribological Behavior of Reinforced Plastic Composite under Natural Seawater Lubrication. Mater. Des. 2013, 51, 983–988. https://doi.org/10.1016/j.matdes.2013.04.017
[15] Zhongzhen, Yu.; Fangyuan, Yu.; Dong, Y.; Haobin, Zh.; Xiuzhi, T. Graphene Phenolic-Resin Compounded Conducting Material and Preparation Method Thereof, 24, 2012.
[16] Lipko, O. O.; Burmistr, M. V.; Kobelchuk, Yu. M, Mykhailova, O. I., Sula, L. I. Novyi termoreaktyvnyi vodorozchynnyi zviazuvach dlia presmaterialiv. Vopr. Khimii Khimicheskoi Tekhnologii 2015, 6, 66–73.
[17] Kabat, O.; Makarenko, D.; Derkach, O.; Muranov, Y. Determining the Influence of the Filler on the Properties of Structural Thermal-Resistant Polymeric Materials Based on Phenylone C1. East.-Eur. J. Enterp. Technol. 2021, 5(6 (113), 24–29. https://doi.org/10.15587/1729-4061.2021.243100
[18] Konchits, A. A.; Shanina, B. D.; Krasnovyd, S. V.; Burya, A. I.; Tomina, A.-M. V.; Yeriomina, Ye. A. Micro Wave Absorption in Carbon Fibers Ural N-24 and their Composites Based on Polyamide Phenilone C-2. Funct. Mater. 2022, 29, 72–80. https://doi.org/10.15407/fm29.01.72
[19] Kabat, О.; Girin, O.; Heti, K. Polymer Composites Based on Aromatic Polyamide and Fillers of Spherical and Layered Structure for Friction Units of High-Performance Equipment. Proc. Inst.Mech. Eng. L: J. Mater.: Des. Appl. 2023, 237, 2669–2676. https://doi.org/10.1177/14644207231176796
[20] Kabat, O.; Hert, K.; Kovalenko, I.; Dudka, A. Fillers on the Silica Base for Polymer Composites for Constructional Purposes. J. Chem. Technol. [Online] 2019, 27, 247–254. http://chemistry.dnu.dp.ua/article/view/081925 (accessed Dec 21, 2019)
[21] Burya, O. I.; Naberezhna, O. O. Development of Self-Reinforced Organoplastic Phenylone-Based Materials. Mater. Sci. 2019, 55, 447–454. https://doi.org/10.1007/s11003-019-00324-w
[22] Burya, A. I.; Safonova, A. M.; Rula, I. V. Influence of Metal- Containing Carbon Fibers on the Properties of Carbon-Filled Plastics Based on Aromatic Polyamide. J. Eng. Phys. Thermophys. 2012, 85, 943–949. https://doi.org/10.1007/s10891-012-0734-6
[23] Luo, J.; Wen, Y.; Jia, X.; Lei, X.; Gao, Z; Jian, M.; Xiao, Z.; Li, L.; Zhang, J.; Li, T.; et al. Fabricating Strong and Tough Aramid Fibers by Small Addition of Carbon Nanotubes. Nat. Commun. 2023, 14, 3019. https://doi.org/10.1038/s41467-023-38701-4
[24] Fan, Ch.; Lyu, J.; Li, Z.; Luo, L. Liu, X. Synthesis of Fractal Crystallized Organic Microspheres Together with Constructing Full Covalent Bonding at the Interface to Strengthen and Toughen Aramid Fiber Composites. Compos. Sci. Technol. 2023, 244, 110313. https://doi.org/10.1016/j.compscitech.2023.110313
[25] Trigo‐López, M.; García, J. M.; Reglero Ruiz, J. A.; García, F. C.; Ferrer, R. Aromatic Polyamides. In Encyclopedia of Polymer Science and Technology; John Wiley & Sons, 2018; pp 1-51. https://doi.org/10.1002/0471440264.pst249.pub2
[26] Chyhvyntseva, O. P.; Kabat, O. S.; Boiko, Yu. V. Vyvchennia trybolohychnykh vlastyvostei orhanoplastyka na osnovi aromatychnoho poliamidu fenilon S-1. Naukovi notatky 2019, 68, 142–146. https://doi.org/10.36910/6775.24153966.2019.68.23
[27] Burya, A. I.; Naberezhnaya, O. A. Friction and Wear of Organoplastics Based on Aromatic Polyamide of Phenylone Type. J. Frict. Wear 2016, 37, 259–262. https://doi.org/10.3103/S106836661603003X