The article provides an overview of modern approaches to mathematical modelling and synthesis of control systems for rotary-wing unmanned aerial vehicles (UAVs) and fixed-wing UAVs. It considers kinematic and dynamic models describing the translational and rotational motion of the mentioned types of UAVs, taking into account aerodynamic forces, moments, and gyroscopic effects. The general principles of mathematical model development, their adaptation for various classes of aerial vehicles, and their application in the synthesis of automatic control systems are analyzed. Particular attention is given to the analysis of stabilization systems and trajectory tracking, including those synthesized using PID controllers, LQR controllers, adaptive methods, model predictive control, and intelligent control theory. The dependence of control strategy selection on the type of UAV, flight characteristics, and mission objectives is examined.
- Nex, F., Armenakis, C., Cramer, M., Cucci, D. A., Gerke, M., Honkavaara, E., Kukko, A., Persello, C., & Skaloud, J. (2022). UAV in the advent of the twenties: Where we stand and what is next. ISPRS Journal of Photogrammetry and Remote Sensing, 184, 215–242. https://doi.org/10.1016/j.isprsjprs.2021.12.006.
- Liu, J., Xiang, J., Jin, Y., Liu, R., Yan, J., & Wang, L. (2021). Boost Precision Agriculture with Unmanned Aerial Vehicle Remote Sensing and Edge Intelligence: A Survey. Remote Sensing, 13(21), 4387. https://doi.org/10.3390/rs13214387.
- Austin, R. (2011). Unmanned Aircraft Systems : UAVS Design, Development and Deployment. Wiley.
- Alladi, T., Chamola, V., Sahu, N., & Guizani, M. (2020). Applications of blockchain in unmanned aerial vehicles: A review. Vehicular Communications, 23, 100249. https://doi.org/10.1016/j.vehcom.2020.100249.
- Chen, X., Tang, J., & Lao, S. (2020). Review of Unmanned Aerial Vehicle Swarm Communication Architectures and Routing Protocols. Applied Sciences, 10(10), 3661. https://doi.org/10.3390/app10103661.
- Alkadi, R., Alnuaimi, N., Yeun, C. Y., & Shoufan, A. (2022). Blockchain Interoperability in Unmanned Aerial Vehicles Networks: State-of-the-Art and Open Issues. IEEE Access, 10, 14463–14479. https://doi.org/10.1109/ACCESS.2022.3145199.
- Cazzato, D., Cimarelli, C., Sanchez-Lopez, J. L., Voos, H., & Leo, M. (2020). A Survey of Computer Vision Methods for 2D Object Detection from Unmanned Aerial Vehicles. Journal of Imaging, 6(8), 78. https://doi.org/10.3390/jimaging6080078.
- Ayoub, N., & Schneider–Kamp, P. (2021). Real-Time On-Board Deep Learning Fault Detection for Autonomous UAV Inspections. Electronics, 10(9), 1091–1091. https://doi.org/10.3390/electronics10091091.
- Hernández, D., Cecilia, J. M., Cano, J.-C., & Calafate, C. T. (2022). Flood Detection Using Real-Time Image Segmentation from Unmanned Aerial Vehicles on Edge-Computing Platform. Remote Sensing, 14(1), 223. https://doi.org/10.3390/rs14010223.
- Khan, W. Z., Ahmed, E., Hakak, S., Yaqoob, I., & Ahmed, A. (2019). Edge computing: A survey. Future Generation Computer Systems, 97, 219–235. https://doi.org/10.1016/j.future.2019.02.050.
- Huda, S. M. A., & Moh, S. (2022). Survey on computation offloading in UAV-Enabled mobile edge computing. Journal of Network and Computer Applications, 201, 103341. https://doi.org/10.1016/j.jnca.2022.103341.
- K Valavanis, & Vachtsevanos, G. J. (2015). Handbook of unmanned aerial vehicles. Springer Reference.
- Nonami, K., Kartidjo, M., Yoon, K.-J., & Budiyono, A. (2013). Autonomous Control Systems and Vehicles. Springer Science & Business Media.
- Khadraoui, S., Fareh, R., Baziyad, M., Bakr Elbeltagy, M., & Bettayeb, M. (2024). A Comprehensive Review and Applications of Active Disturbance Rejection Control for Unmanned Aerial Vehicles. IEEE Access, 1–1. https://doi.org/10.1109/access.2024.3510557
- Tahir, M. A., Mir, I., & Islam, T. U. (2023). A Review of UAV Platforms for Autonomous Applications: Comprehensive Analysis and Future Directions. IEEE Access, 1–1. https://doi.org/10.1109/access.2023.3273780
- Louali, R., Gacem, H., Elouardi, A., & Bouaziz, S. (2017). Implementation of an UAV Guidance, Navigation and Control System based on the CAN data bus: Validation using a Hardware In the Loop Simulation. HAL (Le Centre Pour La Communication Scientifique Directe). https://doi.org/10.1109/aim.2017.8014217
- Tahir, M. A., Mir, I., & Islam, T. U. (2023b). Control Algorithms, Kalman Estimation and Near Actual Simulation for UAVs: State of Art Perspective. Drones, 7(6), 339. https://doi.org/10.3390/drones7060339
- Ferdaus, M. M., Pratama, M., Anavatti, S. G., Garratt, M. A., & Lughofer, E. (2020). PAC: A novel self-adaptive neuro-fuzzy controller for micro aerial vehicles. Information Sciences, 512, 481–505. https://doi.org/10.1016/j.ins.2019.10.001
- Bao, C., Guo, Y., Luo, L., & Su, G. (2021). Design of a Fixed-Wing UAV Controller Based on Adaptive Backstepping Sliding Mode Control Method. IEEE Access, 9, 157825–157841. https://doi.org/10.1109/access.2021.3130296
- Beard, R. W., & Mclain, T. W. (2012). Small unmanned aircraft : theory and practice. Princeton, N.J: Princeton University Press.
- Yang, J., Liu, C., Coombes, M., Yan, Y., & Chen, W.-H. (2021). Optimal Path Following for Small Fixed-Wing UAVs Under Wind Disturbances. IEEE Transactions on Control Systems Technology, 29(3), 996–1008. https://doi.org/10.1109/tcst.2020.2980727
- Mahony, R., Kumar, V., & Corke, P. (2012). Multirotor Aerial Vehicles: Modeling, Estimation, and Control of Quadrotor. IEEE Robotics & Automation Magazine, 19(3), 20–32. https://doi.org/10.1109/mra.2012.2206474
- Abdelmaksoud, S. I., Mailah, M., & Abdallah, A. M. (2020). Control Strategies and Novel Techniques for Autonomous Rotorcraft Unmanned Aerial Vehicles: A Review. IEEE Access, 8, 195142–195169. https://doi.org/10.1109/access.2020.3031326
- Sadiq, M., Hayat, R., Zeb, K., Al-Durra, A., & Ullah, Z. (2024). Robust Feedback Linearization Based Disturbance Observer Control of Quadrotor UAV. IEEE Access, 12, 17966–17981. https://doi.org/10.1109/access.2024.3360333
- Castillo, P., Lozano, R., & Dzul, A. (2005). Modelling and Control of Mini-Flying Machines. London: Springer-Verlag. DOI: 10.1007/1-84628-179-2
- Keane, A. J., Sóbester, A., & Scanlan, J. P. (2017). Small Unmanned Fixed-wing Aircraft Design. John Wiley & Sons.
- Madebo, M. M., Abdissa, C. M., Lemma, L. N., & Negash, D. S. (2024). Robust Tracking Control for Quadrotor UAV With External Disturbances and Uncertainties Using Neural Network Based MRAC. IEEE Access, 12, 36183–36201. https://doi.org/10.1109/access.2024.3374894
- Okyere, E., Bousbaine, A., Poyi, G. T., Joseph, A. K., & Andrade, J. M. (2019). LQR controller design for quad-rotor helicopters. The Journal of Engineering, 2019(17), 4003–4007. https://doi.org/10.1049/joe.2018.8126
- Torres, I. J., Aguilera, R. P., & Ha, Q. P. (2025). Design and Performance Evaluation of Nonlinear Model-Predictive Control for 3-D Ground Target Tracking With Fixed-Wing UAVs. IEEE Open Journal of the Industrial Electronics Society, 6, 76–94. https://doi.org/10.1109/ojies.2024.3519665
- Chen, Y., Wang, C., Zeng, W., & Wu, Y. (2021). Horizontal Nonlinear Path Following Guidance Law for a Small UAV with Parameter Optimized by NMPC. IEEE Access, 1–1. https://doi.org/10.1109/access.2021.3111101
- Gai, W., Zhou, Y., Zhong, M., Sheng, C., & Zhang, J. (2020). Simple Adaptive Control With an Adaptive Anti-Windup Compensator for the Unmanned Aerial Vehicle Attitude Control. IEEE Access, 8, 52323–52332. https://doi.org/10.1109/access.2020.2979741
- Imran, I. H., Rustam Stolkin, & Allahyar Montazeri. (2023). Adaptive Control of Quadrotor Unmanned Aerial Vehicle With Time-Varying Uncertainties. IEEE Access, 11, 19710–19724. https://doi.org/10.1109/access.2023.3243835
- Madebo, N. W. (2025). Enhancing Intelligent Control Strategies for UAVs: A Comparative Analysis of Fuzzy Logic, Fuzzy PID, and GA-Optimized Fuzzy PID Controllers. IEEE Access, 13, 16548–16563. https://doi.org/10.1109/access.2025.3532743
- Madebo, N. W., Abdissa, C. M., & Lemma, L. N. (2024). Enhanced Trajectory Control of Quadrotor UAV Using Fuzzy PID Based Recurrent Neural Network Controller. IEEE Access, 12, 190454–190469. https://doi.org/10.1109/access.2024.3516494
- Jia, K., Lin, S., Du, Y., Zou, C., & Lu, M. (2023). Research on Route Tracking Controller of Quadrotor UAV Based on Fuzzy Logic and RBF Neural Network. IEEE Access, 11, 111433–111447. https://doi.org/10.1109/access.2023.3322944
- Zhang, J., Guo, Y., Zheng, L., Yang, Q., Shi, G., & Wu, Y. (2024). Real-Time UAV Path Planning Based on LSTM Network. Journal of Systems Engineering and Electronics, 35(2), 374–385. https://doi.org/10.23919/jsee.2023.000157
- Sai, S., Garg, A., Kartik Jhawar, Vinay Chamola, & Biplab Sikdar. (2023). A Comprehensive Survey on Artificial Intelligence for Unmanned Aerial Vehicles. IEEE Open Journal of Vehicular Technology, 4, 713–738. https://doi.org/10.1109/ojvt.2023.3316181
- Shymanskyi, V., Ratinskiy, O., & Shakhovska, N. (2024). Fractal Neural Network Approach for Analyzing Satellite Images. Applied Artificial Intelligence, 39(1). https://doi.org/10.1080/08839514.2024.2440839
- Chen, P., Zhang, G., Guan, T., Yuan, M., & Shen, J. (2021). The Motion Controller Based on Neural Network S-Plane Model for Fixed-Wing UAVs. IEEE Access, 9, 93927–93936. https://doi.org/10.1109/access.2021.3093768
- Cheng, Z., Pei, H., & Li, S. (2020). Neural-Networks Control for Hover to High-Speed-Level-Flight Transition of Ducted Fan UAV With Provable Stability. IEEE Access, 8, 100135–100151. https://doi.org/10.1109/access.2020.2997877
- Zhang, H., Cao, C., Xu, L., & Gulliver, T. A. (2018). A UAV Detection Algorithm Based on an Artificial Neural Network. IEEE Access, 6, 24720–24728. https://doi.org/10.1109/ACCESS.2018.2831911
- Deviro. (n.d.). Ciconia VTOL. Retrieved May 26, 2025, from https://deviro.ua/ukr/ciconiavtol
- Ukrspecsystems. (n.d.). Mini Shark UAS. Retrieved May 26, 2025, from https://ukrspecsystems.com/uk/drones/mini-shark-uas
- Vinnytsia Regional Military Administration. (2024, July 29). Photo of Vampire UAV delivery. Retrieved May 26, 2025, from https://www.vin.gov.ua/images/all-news/07-2024/29/1/7.jpg