Nature of the provenance and tectonic setting of oil shale (Middle Eocene) in the Greater Caucasus southeastern plunge
Received: April 16, 2019
Institute of Geology and Geophysics, Azerbaijan National of Academy Sciences
Institute of Geology and Geophysics, Azerbaijan National of Academy Sciences

Objective. The protolith and tectonic settings of the Middle Eocene oil shale sampled from the outcrops and ejected products of mud volcanoes in the Greater Caucasus southeastern plunge were determined using bulk rock geochemistry data. The obtained results were adapted to the palaeogeodynamic conditions of the study areas. Method. The concentrations of element content in the samples were measured by “S8 TIGER Series 2 WDXRF” and “Agilent 7700 Series ICP-MS” mass spectrometers. The microscopes “Loupe Zoom Paralux XTL 745” and “MC-10” and a digital camera “OptixCam” were used to define the age of samples. The distribution of element contents of samples was normalized to Post-Archaean Australian shale (PAAS), Upper Continental Crust (UCC) and Continental Crust (CC). The source terrains of the parent rocks and tectonic settings of oil shale were determined using various ratios and diagrams. Results. The samples show a nature of basaltic and basalt andesitic protolith, which supports an idea that the original composition was derived from mafic and intermediate source terrains. The tectonic setting of oil shale correlates well with the active continental margin and the rift-to-collision transition or paleogeodynamic conditions of the initial collision. Thus, in the shallow sea basin and the initial collision conditions, the process of sedimentation in the middle Eocene was probably associated with the final Paleocene-Eocene basin, which was the northern branch of Meso-Tethys in the Crimea-Greater Caucasus-Kopetdag system. The Jurassic and Cretaceous volcanism associated with subductions, which occurred on the southern slope of the Greater Caucasus (in the Tufan and Vandam uplifts), played an important role as a source of transported materials. Scientific novelty. In the published literature, numerous geological and organic-geochemical features of oil shale in Azerbaijan have been studied. The literature on the study of the provenance and tectonic setting is nonexistent, and this study is the first attempt. Practical significance. The obtained results and the used methodology can be applied to study the genesis of the Middle Eocene deposits and as well as sedimentary rocks in Azerbaijan. 

1. Abbasov, O. R. (2009). Distribution regularities of shales of Paleogene-Miocene sediments in Gobustan (Abstract of PhD thesis … on PhD in Earth Sciences). 26.11.09 / O. R. Abbasov [Institute of Geology and Geophysics, Azerbaijan National Academy of Sciences], Baku.
2. Abbasov, O.R. (2015). Oil shale of Azerbaijan: geology, geochemistry and probable reserves. International Journal of Research Studies in Science, Engineering and Technology, 2(9), 31-37.
3. Abbasov, O R. (2016). Geological and geochemical properties of oil shale in Azerbaijan and petroleum potential of deep-seated Eocene-Miocene deposits. European journal of natural history, 2, 31-40.
4. Abbasov, O. R. (2016). Distribution regularities of oil shale in Azerbaijan. ISJ Theoretical & Applied Science, 3(35), 165-171. doi:
5. Abbasov, O. R. (2017). Distribution regularities and geochemistry of oil shales in Azerbaijan. Mineral resources of Ukraine, 2, 22-30.
6. Abbasov, O.R., Baloglanov, E. E. & Akhundov, R. V. (2015). Organic compounds in ejected rocks of mud volcanoes as geological and geochemical indicators: a study from Shamakhi-Gobustan region (Azerbaijan). Azerbaijan, Baku: International Multidissiplinar Forum "Academic Science Week-2015".
7. Abbasov, O. R., Mamedova, A. N., Huseynov, A. R. & Baloglanov, E. E. (2013). Some new data of geochemical researches of combustible slates of Azerbaijan. Geology, geophysics and development of oil and gas fields, 2, 32-35.
8. Abdullayev, R. N., Mustafayev, M. A., Samedova, R. A., Shafiyev, Kh. I. & Memedov, M. N. (1991). Petrology of the magmatic complexes of the southern slope of the Greater Caucasus (Vandam zone). Baku: Publishing house "Elm".
9. Aliyev, Ad. A., Abbasov, O. R., Ibadzade, A. J. & Mammadova, A. N. (2015). Prospects of using of Azerbaijan oil shale. Proceedings of the Azerbaijan National Academy of Sciences, 2 (1), 43-47.
10. Aliyev, Ad. A. & Abbasov, O. R. (2016). Alternative fuel and energy resources of Azerbaijan. International Azerbaijan Journal, 2 (80), 56-62.
11. Aliyev, Ad. A., Abbasov, O. R., Ibadzade, A. J. & Mammadova, A. N. (2018). Genesis and organic geochemical characteristics of oil shale in eastern Azerbaijan. SOCAR Proceedings, 3, 4-15. doi: 10.5510/OGP20180300356
12. Aliyev, Ad. A., Abbasov, O. R., Ibadzade, A. J. & Mammadova, A. N. (2018). Organic-geochemical study of oil shales in Pre-Caspian-Guba region (Azerbaijan). Mineral resources of Ukraine, 3, 13-18.
13. Aliyev, Adil & Abbasov, Orhan (2018). Organic geochemical characteristics of oil shale in Azerbaijan. Tehran, Iran: The 36th National and the 3rd International Geosciences Congress.
14. Аliyev, H. А., Ahmedbeyli, F. S., Ismayilzade, A. J., Kengerli, T. N. & Rustamov, M. I. (2005). Geology of Azerbaijan, (Vol. IV, 506 p.). Baku: "Nafta-Press" Publishing house.
15. Aliyev, Ad. A., Aliyev, Ch. S., Feyzullayev, A. A., Huseynov D. A., Isayeva M. I., Gadirov F. A. … & Novruzov, N. A. (2015). Geology of Azerbaijan ,(Vol. II, 341 p.). Baku: Publishing house "Elm".
16. Aliyev, Ad. A., Bayramov, A. A., Abbasov, O. R. & Mammadova, A. N. (2014). Reserves of oil shale and natural bitumen. National Atlas of the Republic of Azerbaijan, Map (Scale 1:1000000), 101.
17. Aliyev, Ad. A. & Bayramov, A. A. (1999). Some aspects of the tectonics of the Gobustan mud volcanic zones. Proceedings of ANAS, Earth Sciences, 1, 129-131.
18. Aliyev, Ad. A., Guliyev, I. S., Dadashev, F. G. & Rahmanov, R. R. (2015). Atlas of mud volcanoes in the world. Baku: Publishing house "Nafta-Press", "Sandro Teti Editore", 361 p.
19. Alvarez, N. C. & Roser, B. P. (2007). Geochemistry of black shales from the Lower Cretaceous Paja Formation, Eastern Cordillera, Colombia: Source weathering, provenance, and tectonic setting. Journal of South American Earth Sciences, 23(4), 271-289.
20. Babayev, Sh. A., Bagmanov, M. A., Aliyeva, E. H.-M., Alizade, Kh. A., Kengerli, T. N., Latifova, Y. N. & Zohrabova, V. R. (2015). Geology of Azerbaijan (Vol. II, 532 p.). Baku: Publishing house "Elm".
21. Beard, J. S. (1986). Characteristic mineralogy of arc-related cumulate gabbros: Implications for the tectonic setting of gabbroic plutons and for andesite genesis. Geology, 14(10), 848-851.<848:CMOACG>2.0.CO;2<848:CMOACG>2.0.CO;2
22. Belov, A. A., Burtman, V. S., Zinkevich, V. P., Knipper, A. L., Lobkovsky, L. I., Lukianov, A. V. … & Rachkov, V. S. (1990). Tectonic layering of Lithosphere and Regional Geological Investigations. Nauka, Moscow.
23. Bhatia, M. R. (1983). Plate tectonics and geochemical composition of sandstones. Journal of Geology, 91(6), 611-627. DOI: 10.1086/628815
24. Campos Neto, M. D. C., Basei, M. A. S., Assis Janasi, V. D. & Moraes, R. (2011). Orogen migration and tectonic setting of the Andrelândia Nappe system: an Ediacaran western Gondwana collage, south of São Francisco craton. Journal of South American Earth Sciences, 32, 393-406. DOI: 10.1016/j.jsames.2011.02.006
25. Coleman, R. G. (1977). Emplacement and metamorphism of ophiolites. Rend. Soc. Ital. Mineral. Petrol., 33 (1): 161-190.
26. Ershov, A. V., Brunet, M. -F., Nikishin, A. M., Bolotov, S. N., Nazarevich, B. P. & Korotaev, M. V. (2003). Northern Caucasus basin: Thermal history and synthesis of subsidence models. Sedimentary Geology, 156, 95-118, doi: 10.1016/S0037-0738(02)00284-1
27. Garver, J. I., Royce, P. R. & Smick, T. A. (1996). Chromium and nickel in shale of the Taconic foreland: a case study for the provenance of fine-gained sediments with an ultramafic source. Journal of Sedimentary Research, 66, 100-106.
28. Gill, James. (1981). Orogenic Andesites and Plate Tectonics. Springer. 10.1007/978-3-642-68012-0
29. Hayashi, K. I., Fujisawa, H., Holland, H. D. & Ohmoto, H. (1997). Geochemistry of ~1.9 Ga Sedimentary Rocks from Northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61(19), 4115-4137. doi:10.1016/s0016-7037(97)00214-7
30. Hiroaki, Ishiga & Kaori, Dozen. (1997). Geochemical indications of provenance change as recorded in Miocene shales: opening of the Japan Sea, San'in region, southwest Japan. Marine Geology, 144(1-3), 211-228.
31. Holland H. D. (1984). The chemical evolution of atmosphere and oceans. Princeton Univ. Press, Princeton N.J.
32. Irvine, T. N. & Baragar, W. R. A. (1971). Aguide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5), 523-548.
33. J. Barry Maynard, Renzo Valloni & Ho-Shing Yu. (1982). Composition of modern deep-sea sands from arc-related basins. Geological Society, London, Special Publications, 10, 551-561.
34. J. Brendan Murphy. (2000). Tectonic influence on sedimentation along the southern flank of the late Paleozoic Magdalen basin in the Canadian Appalachians: Geochemical and isotopic constraints on the Horton Group in the St. Marys basin, Nova Scotia GSA Bulletin, 112(7), 997-1011.<997:TIOSAT>2.0.CO;2<997:TIOSAT>2.0.CO;2
35. Kalsbeek, F. & Frei, Robert. (2010). Geochemistry of Precambrian sedimentary rocks used to solve stratigraphical problems: An example from the Neoproterozoic Volta basin, Ghana. In: Precambrian Research, 176 (1-4), 65-76.
36. Kent C. Condie. (1997). Plate Tectonics and Crustal Evolution (Fourth Edition). Great Britain. Butterworth-Heinemann.
37. Khain, V. E. (1950). Geotectonic development of the south-eastern Caucasus.
38. Khain, V. E. (1994). Geology of the Northern Eurasia (USSR). Second Part of the Geology of the USSR. Phanerozoic Fold Belts and Young Platforms. Gebru¨der Borntraeger, Berlin.
39. Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., Bateman … Woolley, A. R. (2002). Igneous Rocks: A Classifi cation and Glossary of Terms, Recommenda-tions of the International Union of Geological Sciences, Subcommission of the Systematics of Igneous Rocks. Cambridge, UK: Cambridge University Press.
40. Le Bas, M. J., Le Maitre, R. W., Streckeisen A. & Zanettin B. (1986). A chemical classifi cation of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27, 745-750.
41. Marie-Françoise Brunet, Maxim V. Korotaev, Andrei V. Ershov & Anatoly M. Nikishin. (2003). The South Caspian Basin: a review of its evolution from subsidence modelling. Sedimentary Geology, 156, 119-148.
42. Milanovsky, E. E. (1991). Geology of the USSR. Part 3 Moscow Univ. Press, Moscow.
43. Müller, D. & Groves, D. I. (2019). Potassic igneous rocks and associated gold-copper mineralization (5th ed.). Mineral Resource Reviews. Springer-Verlag Heidelberg. 10.1007/BFb0017712
44. Ziegler, P. A., & Cavazza, W. (Eds.). (2001). Mesozoic and Cenozoic evolution of the Scythian Platform -Black-Sea - Caucasus Peri-Tethys Memoir 6: Peri-Tethyan Rift. Wrench Basins and Passive Margins. Me'm. Mus. natn. Hist. nat., Paris.
45. P. Huntsman-Mapila, S. Ringrose, A. W. Mackay, W. S. Downey, M. Modisi, S. H. Coetzee, Jean-Jacques Tiercelin, A. B. Kampunzu & C. Vanderpost. (2006). Use of the geochemical and biological sedimentary record in establishing palaeoenvironments and climate change in the Lake Ngami basin. NW Botswana, 148(1), 51-64.
46. Roser, B. P. & Korsch, R. J. (1986). Determination of tectonic setting sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. Journal of Geology, 94(5), 635-650.
47. Roser, B. P. & Korsch, R. J. (1988). Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, 67, 119-139.
48. Rudnick, R. L. & Fountain, D. M. (1995). Nature and composition of the continental crust - a lower crustal perspective. Reviews in Geophysics, 33, 267-309.
49. Rudnick, R. L. & Gao, S. (2003). Composition of the Continental Crust. The Crust: Treatise on Geochemistry, Elsevier-Pergamum, Oxford.
50. Rustamov M. I. (2005). South Caspian Basin - geodynimc events and processes. Baku: Nafta-Press.
51. Rustamov, M. I. (2008). Geodynamics and magmatism of the Caspian-Caucasian segment of the Mediterranean belt in the Phanerozoic (Abstract of science doctor thesis … on doctor science in Earth Sciences). 07.05.2008. Institute of Geology and Geophysics, Azerbaijan National Academy of Sciences, Baku.
52. Rustamov M. I. (2015). Main indicators of the collisional geodynamics of Zagros-Caucasian segment of Mediterranean belt. Proceedings of the Azerbaijan National Academy of Sciences, Earth Sciences, 1, 3-14.
53. Shaw, D. M. (1968). A review of K-Rb fractionation trends by covariance analysis. Geochim. Cosmochim. Acta, 32, 573-601.
54. Shikhalibeyli, E. Sh. (1967). Geological structure and history of the tectonic development of the eastern part of the Lesser Caucasus. Baku: Publishing house "Academy of Sciences" USSR.
55. Sugitani, K., Horiuchi, Y., Adachi, M. & Sugisaki, R. (1996). Anomalously low Al2O3/TiO2 values of Archaean chertsfrom the Pilbara Block, Western Australia-possible evidence of extensive chemical weathering on the early earth. Precambrian Res., 80, 49-76.
56. Taylor, S. R. & McLennan, S. M. (1985). The continental crust: its composition and evolution. Oxford: Blackwell.
57. Verma, S. P. & Armstrong-Altrin, J. S. (2013). New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chemical Geology, 355, 117-133.
58. Zonenshain, L. P. & Le Pichon, X. (1986). Deep basins of the Black Sea and Caspian Sea as remnants of Mesozoic back-arc basins. Tectonophysics, 123, 181- 211.