Temporal changes in the Earth’s tensor of inertia and the 3d density model based on the UT/CSR data

Received: August 23, 2020
Department of Geodesy, Institute of Geodesy, Lviv Polytechnic National University
Department of Geodesy, Institute of Geodesy, Lviv Polytechnic National University
Department of Geodesy, Institute of Geodesy, Lviv Polytechnic National University
Department of Geodesy, Institute of Geodesy, Lviv Polytechnic National University

This study aims to derive the Earth’s temporally varying Earth’s tensor of inertia based on the dynamical ellipticity HD(t), the coefficients C2m(t), S2m(t), from UT/CSR data. They allow to find the time-varying Earth’s mechanical and geometrical parameters during the following periods: (a) from 1976 to 2020 based on monthly and weekly solutions of the coefficient C20 ; (b) from 1992 to 2020 based on monthly and weekly solutions of the non zero coefficients A20(t), A22(t)  related to the principal axes of inertia, allowing to build models their long-term variations. Differences between C20  and A20 , given in various systems, represent the average value  ≈2·10-15  , which is smaller than time variations of C20 or A20 , characterizing a high quality of UT/CSR solutions. Two models for the time-dependent dynamical ellipticity HD(t)  were constructed using long-term variations for the zonal coefficient  A20(t) during the past 44 and 27.5 years. The approximate formulas for the time-dependent dynamical ellipticity  HD(t) were provided by the additional estimation of each parameter of the Taylor series, fixing  HD=3.27379448x10-3 at epoch  t0=J2000 according to the IAU2000/2006 precession-nutation theory. The potential of the time-dependent gravitational quadrupole V2 according to Maxwell theory was used to derive the new exact formulas for the orientation of the principal axes A, B, C   via location of the two quadrupole axes. Hence, the Earth’s time-dependent mechanical and geometrical parameters, including the gravitational quadrupole, the principal axes and the principal moments of inertia were computed at each moment during the past 27.5 years from 1992 to 2020. However, their linear change in all the considered parameters is rather unclear because of their various behavior on different time-intervals including variations of a sign of the considered effects due to a jump in the time-series  during the time-period 1998 – 2002. The Earth’s 3D and 1D density models were constructed based on the restricted solution of the 3D Cartesian moments inside the ellipsoid of the revolution. They were derived with conditions to conserve the time-dependent gravitational potential from zero to second degree, the dynamical ellipticity, the polar flattening, basic radial jumps of density as sampled for the PREM model, and the long-term variations in space-time mass density distribution. It is important to note that in solving the inverse problem, the time dependence in the Earth's inertia tensor arises due to changes in the Earth's density, but does not depend on changes in its shape, which is confirmed by the corresponding equations where flattening is canceled.


  1. 1. Bourda, G., & Capitaine, N. (2004). Precession, nutation, and space geodetic determination of the Earth's variable gravity field. Astronomy & Astrophysics, 428(2), 691-702. DOI: 10.1051/0004-6361:20041533
    2. Bullard, E. C. (1954). The interior of the Earth. In: The Earth as a Planet (G.P. Kuiper, ed). Univ. of Chicago Press, 57-137.
    3. Bullen, K. E. (1975). The Earth's Density. Chapman and Hall, London.
    4. Burša, M., Groten E., & Šìma, Z. (2008). Steady Change in Flattening of the Earth: The Precession Constant and its Long-term Variation. The Astronomical Journal, 135(3):1021-1023, doi.org/10.1088/0004-6256/135/3/1021
    5. Capitaine N., Wallace, P. T., & Chapront, J. (2003). Expressions for IAU 2000 precession quantities. Astronomy & Astrophysics, 412(2), 567-586. DOI: 10.1051/0004-6361:20031539
    6. Capitaine, N., Mathews, P. M., Dehant, V., Wallace, P. T., & Lambert, S. B. (2009). On the IAU 2000/2006 precession-nutation and comparison with other models and VLBI observations. Celestial Mechanics and Dynamical Astronomy, 103(2), 179-190, DOI 10.1007/s10569-008-9179-9
    7. Cheng, M. K., Eanes, R. J., Shum, C. K., Schutz, B. E., & Tapley, B. D. (1989). Temporal variations in low degree zonal harmonics from Starlette orbit analysis. Geophysical Research Letters, 16(5), 393-396.
    8. Chen, W., & Shen, W. (2010). New estimates of the inertia tensor and rotation of the triaxial nonrigid Earth. Journal of Geophysical Research: Solid Earth, 115: B12419. doi:10.1029/2009JB00709
    9. Chen, W., Li, J. C., Ray, J., Shen, W. B., & Huang, C. L. (2015). Consistent estimates of the dynamic figure parameters of the earth. Journal of Geodesy, 89(2), 179-188. DOI 10.1007/s00190-014-0768-y
    10. Cheng, M., & Tapley, B. D. (2004). Variations in the Earth's oblateness during the past 28 years. Journal of Geophysical Research: Solid Earth, 109, B09402, doi:10.1029/2004JB003028, 2004
    11. Cheng, M., Ries, J. C., & Tapley, B. D. (2011). Variations of the Earth's figure axis from satellite laser ranging and GRACE. Journal of Geophysical Research: Solid Earth, 116. B01409, doi:10.1029/2010JB000850.
    12. Cheng, M., Tapley, B. D., & Ries, J. C. (2013). Deceleration in the Earth's oblateness. Journal of Geophysical Research: Solid Earth, 118(2), 740-747, doi:10.1002/jgrb.50058.
    13. Cheng, M., & Ries, J. (2017). The unexpected signal in GRACE estimates of C20. Journal of Geodesy, 91(8), 897-914. DOI 10.1007/s00190-016-0995-5
    14. Cox, C. M., & Chao, B. F. (2002). Detection of a large-scale mass redistribution in the terrestrial system since 1998. Science, 297(5582), 831-833.
    15. Darwin, G. H. (1883). IV. On the figure of equilibrium of a planet of heterogeneous density. Proceedings of the Royal Society of London 36(228-231), 158-166.
    16. Dehant, V. et al. (1999) Considerations concerning the non-rigid Earth nutation theory. Celestial Mechanics and Dynamical Astronomy, 72, pp. 245-309.
    17. Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the earth and planetary interiors, 25(4), 297-356.
    18. Fukushima, T. (2003). A new precession formula. The Astronomical Journal, 126(1), 494-534.
    19. Grafarend, E., Engels, J., & Varga, P. (2000). The temporal variation of the spherical and Cartesian multipoles of the gravity field: the generalized MacCullagh representation. Journal of Geodesy, 74(7-8), 519-530
    20. Groten, E. (2004). Fundamental parameters and current (2004) best estimates of the parameters of common relevance to astronomy, geodesy, and geodynamics. Journal of Geodesy, 77, 724-797, doi:10.1007/s00190-003-0373-y
    21. IERS Standards (1989). (IERS Technical Note; 3). Chapter 14: Radiation Pressure Reflectance Model. Paris: Central Bureau of IERS-Observatoire de Paris.
    22. Liu, J. C., & Capitaine, N. (2017). Evaluation of a possible upgrade of the IAU 2006 precession. Astronomy & Astrophysics, 597, A83. DOI: 10.1051/0004-6361/201628717
    23. Lambeck, K. (1971). Determination of the Earth's pole of rotation from laser range observations to satellites. Bulletin Géodésique (1946-1975), 101(1), 263-281.
    24. Marchenko A.N. (1979) The gravitational quadrupole of a planet. Letters in Soviet Astronomical Journal, No 5, 198-200.
    25. Marchenko A.N. (1998) Parameterization of the Earth's gravity field. Point and line singularities. Lviv Astronomical and Geodetic Society, Lviv.
    26. Marchenko, A. N. (2000). Earth's radial density profiles based on Gauss' and Roche's distributions. Bolletino di Geodesia e Scienze Affini, 59(3), 201-220.
    27. Marchenko, A. N., & Abrikosov, O. A. (2001). Evolution of the Earth's principal axes and moments of inertia: The canonical form of solution. Journal of Geodesy, 74(9), 655-669.
    28. Marchenko A. N. (2003) A note on the eigenvalue-eigenvector problem. In: Festschrift dedicated to Helmut Moritz on his 70th birthday. (Ed. N. Kühtreiber) Institute for Geodesy, Graz University of Technology. Graz (Austria) 2003. p.p. 143-152.
    29. Marchenko, A. N., & Schwintzer, P. (2003). Estimation of the Earth's tensor of inertia from recent global gravity field solutions. Journal of geodesy, 76(9-10), 495-509.
    30. Marchenko, A. N. (2009a). Current estimation of the Earth's mechanical and geometrical parameters. In: M.G. Sideris (ed.), Observing our Changing Earth. International Association of Geodesy Symposia 133. Springer-Verlag, Berlin, Heidelberg, pp. 473-481
    31. Marchenko A.N. (2009b) The Earth's global density distribution and gravitational potential energy. In: M.G. Sideris (ed.), Observing our Changing Earth, International Association of Geodesy Symposia 133. Springer-Verlag, Berlin, Heidelberg, pp. 483-491.
    32. Marchenko, A. N., & Lopushansky, A. N. (2018). Change in the Zonal Harmonic Coefficient C20, Earth's Polar Flattening, and Dynamical Ellipticity from SLR Data. Geodynamics, 2(25), 5-14. (http://dx.doi.org/10.4401/ag-7049 ) Published by Lviv Polytechnic National University - ISSN: 1992-142X (Print), 2519-2663 (Online), Lviv, Ukraine
    33. Mathews, P. M., Herring, T. A., & Buffett, B. A. (2002). Modeling of nutation and precession: New nutation series for nonrigid Earth and insights into the Earth's interior. Journal of Geophysical Research: Solid Earth, 107(B4), 10.1029/2001JB000390.
    34. Maxwell, J. K. (1881). A Treatise on Electricity and Magnetism. 2nd Edition, Oxford, Vol. 1, 179-214.
    35. Mescheryakov, G. A. (1991). Problems of the potential theory and generalized Earth. Nauka, Moscow, 203 p. (in Russian)
    36. Mescheryakov, G. A, & Deineka, J. P. (1977). A variant of the Earth's mechanical model. Geofysikalni Sbornik. XXV, Travaux de l'Inst. Géophysique de l'Académie Tchécoslovaque des Science, No. 478, pp. 9-19.
    37. Moritz, H. (1990). The Figure of the Earth. Theoretical Geodesy and Earth's Interior, Wichmann, Karlsruhe.
    38. Moritz, H. & I. I. Muller (1987). Earth Rotation. Theory and observation, Ungar, New York.
    39. Melchior, P. (1978). The tides of the planet Earth. Pergamon.
    40. Petit, G, & Luzum, B (eds) (2010). IERS conventions (2010), IERS Technical Notes 36. Observatoire de Paris, Paris
    41. Rochester, M. G., & Smylie, D. E. (1974). On changes in the trace of the Earth's inertia tensor. Journal of Geophysical Research, 79(32), 4948-4951.
    42. Rubincam, D. P. (1984). Postglacial rebound observed by LAGEOS and the effective viscosity of the lower mantle. Journal of Geophysical Research: Solid Earth, 89(B2), 1077-1087.
    43. Schwintzer, P., Reigber, C., Massmann, F. H., Barth, W., Raimondo, J. C., Gerstl, M., ... & Lemoine, J. M. (1991). A new Earth gravity field model in support of ERS 1 and SPOT2: GRIM4-S1/C1., final report. German Space Agency and French Space Agency., Munich/Toulouse.
    44. Souchay, J., & Folgueira, M. (1998). The Effect Of Zonal Tides On The DynamicalEllipticity Of The EarthAnd Its Influence On The Nutation. Earth, Moon, and Planets, 81(3), 201-216.
    45. Williams, J. G. (1994). Contributions to the Earth's obliquity rate, precession, and nutation. The Astronomical Journal, 108, 711-724.
    46. Yoder, C. F., Williams, J. G., Dickey, J. O., Schutz, B. E., Eanes, R. J., & Tapley, B. D. (1983). Secular variation of Earth's gravitational harmonic J2 coefficient from Lageos and nontidal acceleration of Earth rotation. Nature, 303(5920), 757-762.