Two impact craters at Emmerting, Germany: field documentation and geophysics

https://doi.org/10.23939/jgd2024.02.027
Received: February 02, 2024
1
Institute of Rock Structure and Mechanics of the Academy of Sciences of the Czech Republic
2
Czech Technical University
3
Mělník, Czech Republic
4
Czech Technical University
5
Nuclear Physics Institute, Czech Acade
6
Institute of Geonics, Czech Academy of Sciences
7
Institute of Hydrogeology, Engineering, Geology and Applied Geophysics, Charles University; Geophysical Institute, University of Alaska
8
Czech Technical University

New research of two craters at Emmerting (No. 4 and No. 5), Germany, is presented. This paper should be the first part of two papers concerning presumed impact craters at Emmerting. The second paper will be about mineralogical/petrological, temperature and stress analyses. The enstatite-dominated meteoritic material, found in the crater No. 4 [Procházka et al., 2022; Procházka, 2023], is the subject of a separate detailed research. High-temperature effects and extreme deformation are significant in both craters. This deformation is explained with the effects of pressure wave(s) and later decompression in a target dominated by large but unconsolidated pebbles. Mutual collisions and secondary projectiles were documented. While most pebbles in the Crater No. 4 were thermally affected, the fine-grained fraction of the filling is poor in such material. It follows that small particles were volatilized and/or blown away during crater formation, or transported away later (e.g., by groundwater). Gamma-ray spectrometry has indicated that the walls of Crater No. 4 are significantly enriched in major natural radionuclides of Th, K and partly U, while the crater interior is depleted in these elements which are concentrated mainly in fine-grained fractions. This suggests a selective removal and volatilization of fine-grained material during the crater formation. The georadar measurements at both craters show that crater rims (walls) were partly pushed from below and partly heaped up from above with material that came from the crater interior. Georadar detected a compact body below the crater floor which is supported by results of resistivity measurements. A set of geophysical, geochemical, microscopic and mineralogical measurements proved that the craters at Emmerting are of impact origin. Extreme high temperature (HT) conditions inside the crater and small diameter of both craters indicate possible existence of very small meteoroids that are able to penetrate Earth´s atmosphere with high impact velocity (more than 30 km/s). This fact should challenge current models of bolide penetration through atmosphere.

  1. Acevedo, R. D., J. Rabassa, J. F. Ponce, O. Martínez, M. J. Orgeira, C. Prezzi, H. Corbella, M. González-Guillot, M. Rocca, I. Subías, & C. Vásquez (2012). The Bajada del Diablo astrobleme-strewn field, central Patagonia, Argentina: Extending the exploration to surrounding areas. Geomorphology, 169-170, 151-164. https://doi.org/10.1016/ j.geomorph.2012.04.020.
  2. Anfinogenov, J., Budaeva, L., Kuznetsov, D., & Anfinogenova, Y. (2014). John’s Stone: A possible fragment of the 1908 Tunguska meteorite. Icarus, 243, 139-147. https://doi.org/10.1016/j.icarus.2014.09.006.
  3. Anonymous (1996). Geologische Karte von Bayern 1:500.000, 4. Auflage. Bayerisches Geologisches Landesamt, München (in German).
  4. Berger, N. (2014). Analyse eines möglichen Meteoritenimpakts im Bereich der Prims (Nalbach, Saarland). Master thesis, Univ. Trier, 107 pp. (in German).
  5. Berger, N., Müller, W., & Ernstson, K. (2015). Strong shock metamorphism and a crater: evidence of a holocene meteorite impact event near Nalbach (Saarland, Germany). In 46th Annual Lunar and Planetary Science Conference (No. 1832, p. 1255).
  6. Borovička, J., & Kalenda, P. (2003). The Morávka me¬teorite fall. 4. Meteoroid dynamics and fragmentation in the atmosphere. Meteorit. & Planet. Sci. 38(7), 1023-1043. https://doi.org/10.1111/j.1945-5100.2003.tb00296.x.
  7. Bunch, T. E., M. A. LeCompte, A. V. Adedeji, J. H. Wittke, T. D. Burleigh, R. E. Hermes, C. Mooney, D. Batchelor, W. S. Wolbach, J. Kathan, G. Kletetschka, M. C. L. Patterson, E. C. Swindel, T. Witwer, G. A. Howard, S. Mitra, C. R. Moore, K. Langworthy, J. P. Kennett, A. West, & P. J. Silvia (2021). A Tunguska sized airburst destroyed Tall el Hammam a Middle Bronze Age city in the Jordan Valley near the Dead Sea. Scientific reports, 11(1), 1-64., https://doi.org/10.1038/s41598-021-97778-3.
  8. Doppler, G., & Geiss, E. (2005). Der Tüttensee im Chiemgau–Toteiskessel statt Impaktkrater. Baye­risches Landesamt für Umwelt, online aufrufbar: https://www.lfu.bayern.de/geologie/meteorite/ bayern/doc/tuettensee.pdf (letzter Zugriff: 10. (in German).
  9. Earth Impact Database (accessed on August 21st, 2022). University of New Brunsvick, Canada.
  10. Ernstson, K. (2016). Evidence of a meteorite impact-induced tsunami in Lake Chiemsee (Southeast Germany) strengthened. In 47th Annual Lunar and Planetary Science Conference (No. 1903, p. 1263).
  11. Ernstson, K. (2017). The Digital Terrain Model (DTM) and the evaluation of known and the search for new craters in the Chiemgau meteorite impact strewn field. Chiemgau Impact Research Team. URL: https://www.chiemgau-impakt.de/wp-content/uploads/2017/01/DGM-1-final-1.pdf.
  12. Ernstson, K., Mayer, W., Neumair, A., Rappenglück, B., Rappenglück, M. A., Sudhaus, D., & Zeller, K. W. (2010). The Chiemgau crater strewn field: evidence of a Holocene large impact event in southeast Bavaria, Germany. J. Sib. Federal Univ., Eng. Technol., 1, 72-103. https://cyberleninka.ru/ article/n/the-chiemgau-crater-strewn-field-evidence-of-a-holocene-large-impact-event-in-southeast-bavaria-germany.
  13. Fehr K.T., Pohl J., Mayer W., Hochleitner R., Faßbinder J., Geiß E., & Kerscher Y. (2005). A meteorite impact crater field in eastern Bavaria? A preliminary report. Meteor. Planet. Sci. 40, 187-194. https://doi.org/10.1111/j.1945-5100.2005. tb00374.x
  14. Huber, R., Darga, R., & Lauterbach, H. (2020). Der späteiszeitliche Tüttensee-Komplex als Ergebnis der Abschmelzgeschichte am Ostrand des Chiemsee-Gletschers und sein Bezug zum. „Chiemgau Impakt“ (Landkreis Traunstein, Oberbayern). Quaternary Sci. J. 69, 93-120 (in German). https://doi.org/10.5194/egqsj-69-93-2020.
  15. Jull, A. J. T. (2001). Terrestrial ages of meteorites. In: Peucker-Ehrenbrink B., Schmitz B. (Eds.). Accretion of extraterrestrial matter throughout Earth’s history. Springer US, Boston, pp. 241-266. https://link.springer.com/chapter/10.1007/978-1-4419-8694-8_14.
  16. Kiefer, S. W. (1971). Shock metamorphism of the Coconino Sandstone at Meteor Crater, Arizona. J. Geophys. Res. 76, 5449-5473. https://doi.org/ 10.1029/JB076i023p05449.
  17. Kletetschka, G., Prochazka, V., Fantucci, R. & Trojek, T. (2017). Survival Response of Larix Sibirica to the Tunguska Explosion. Tree-Ring Res. 73, 75-90, https://doi.org/10.3959/1536-1098-73.2.75.
  18. Kletetschka, G., Vyhnanek, J., Kawasumiova, D., Nabelek, L. & Petrucha, V. (2015). Localization of the Chelyabinsk Meteorite from Magnetic Field Survey and GPS Data. Ieee Sensors Journal 15, 4875-4881, https://doi.org/10.1109/jsen.2015.2435252.
  19. Moore, A. M., Kennett, J. P., Napier, W. M., Bunch, T. E., Weaver, J. C., LeCompte, M., ... & West, A. (2020). Evidence of cosmic impact at Abu Hureyra, Syria at the Younger Dryas onset (~12.8 ka): High-temperature melting at >2200°C. Scientific Reports 10, 4815, 22 pp. https://doi.org/10.1038/s41598-020-60867-w.
  20. Neumair, A., & Ernstson K. (2011). Geomagnetic and morphological signature of small crateriform structures in the Alpine Foreland, Southeast Germany. AGU Fall Meeting, # GP11A-1023. https://ui.adsabs.harvard.edu/abs/2011AGUFMGP11A1023N/abstract
  21. Neumair, A., Waitzinger, M., & Finger, F. (2016). Inte¬resting glass coatings on cobbles and rock fragments from the Alpine foreland, SE-Bavaria, Germany, and their possible origin. GeoTirol 2016, A233. https://uni-salzburg.elsevierpure.com/en/ publications/interesting-glass-coatings-on-cobbles-and-rock-fragments-from-the.
  22. Osinski, G. R., R. A. F. Grieve, L. Ferrière, A. Losiak, A. E. Pickersgill, A. J. Cavosie, S. M. Hibbard, P. J. A. Hill, J. J. Bermudez, C. L. Marion, J. D. Newman, & S. L. Simpson. (2022).  Impact Earth: A review of the terrestrial impact record. Earth-Sci. Rev. 232, 104112, 48 pp, https://doi.org/10.1016/ j.earscirev.2022. 104112).
  23. Plado, J., Losiak, A., Jõeleht, A., Ormö, J., Alexanderson, H., Alwmark, C., Wild, E.M., Steier, P., Awdankiewicz, M., & Belcher, C. (2022). Discriminating between impact or nonimpact origin of small meteorite crater candidates: No evidence for an impact origin for the Tor crater, Sweden. Meteor. Planet. Sci., 16 pp., https://doi.org/ 10.1111/maps.13914.
  24. Poßekel J., & Ernstson K. (2019). Anatomy of young meteorite craters in a soft target (Chiemgau impact strewn field, SE Germany) from ground penetrating radar (GPR) measurements. 50th LPSC, A1204. https://ui.adsabs.harvard.edu/abs/2019LPI....50.1204P/abstract.
  25. Procházka, V., & Kletetschka, G. (2016). Evidence for superaparamagnetic nanoparticles in limestones from Chiemgau crater field, SE Germany. 47th LPSC, A2763. https://ui.adsabs.harvard.edu/abs/ 2016LPI....47.2763P/abstract.
  26. Procházka, V. (2023). Melt behavior in two impact craters at Emmerting, Germany: Deformation, expansion, injections, and the role of underpressure and mutual collisions of pebbles. 54th LPSC, A2102.
  27. Procházka V., Kalenda P., Trojek T., Faltus M. (2021): Geologicky mladé “zamrzlé” tavení hornin na několika lokalitách v Bavorsku: neobvyklý typ impaktu a výbuchy ve vzduchu? (Geologically young "frozen" melting of rocks at several sites in Bavaria: an unusual type of impact and explosions in the air?). Proc. 26th Quaternary Seminary Meeting, Brno, Czech Republic.
  28. Procházka V., Martinec P., Štorc R., Kalenda P., Trojek T., Thinová L., Tengler R., Mizera J., (2022). Holocenní impaktní kráter u Emmertingu (Bavorsko): mineralogie výplně včetně meteoritu a možné vysvětlení kompaktního tělesa pode dnem kráteru (Holocene impact crater at Emmerting (Bavaria): mineralogy of the filling including meteorite and a possible explanation of the compact body below the crater bottom). Proc. 27th Quaternary Seminary Meeting, Brno. Rappenglück M.A., Ernstson K., Mayer W., Beer R., Benske G., Siegl C., Sporn R., Bliemetsrieder T., & Schüssler U. (2004). The Chiemgau impact event in the Celtic Period: evidence of a crater strewnfield and a cometary impactor containing presolar matter. Chiemgau Impact Research Team. URL: https://www.chiemgau-impakt.de/pdfs/ Chiemgau_ impact.pdf.
  29. Rappenglück B., Rappenglück M.A., Ernstson K., Mayer W., Neumair A., Sudhaus D., & Liritzis I. (2010): The fall of Phaethon: a Greco-Roman geomyth preserves the memory of a meteorite impact in Bavaria (south-east Germany). Antiquity 84, 428-439. https://doi.org/10.1017/S0003598X 00066680.
  30. Rösch M., Friedmann A., Rieckhoff S., Stojakowits P., & Sudhaus D. (2021). A Late Würmian and Holocene pollen profile from Tüttensee, Upper Bavaria, as evidence of 15 Millennia of landscape history in the Chiemsee glacier region. Acta Palaeobotanica, 61/2, 136-147. https://doi.org/ 10.35535/acpa-2021-0008
  31. Rösler W., Patzelt A., Hoffmann V., & Raeymaekers B. (2006). Characterization of a small crater-like structure in S.E. Bavaria, Germany. Proc. First International Conference on Impact Cratering in the Solar System, Noordwijk, pp. 67-71. European Space Agency.
  32. Schüssler U. (2005). Chiemgau-Impakt: Petrographie und Geochemie von Geröllen mit Deformationsmerkmalen und starker thermischer Bean­spruchung aus dem nördlichen Bereich des Impakt-Areals. Chiemgau Impact Research Team. (research report, 28 pp.), URL: urn:nbn:de:101:1-201005228993.
  33. Tancredi, G., Ishitsuka, J., Schultz, P. H., Harris, R. S., Brown, P., Revelle, D.O., Antier, K., Pichon, A. L., Rosales, D., Vidal, E., Varela, M. E., Sánchez, L., Benavente, S., Bojorquez, J., Cabezas, D. and Dalmau, A. (2009). A meteorite crater on Earth formed on September 15, 2007: The Carancas hypervelocity impact. Meteor. Planet. Sci., 44: 1967-1984. https://doi.org/10.1111/j.1945-5100. 2009.tb02006.x.
  34. Tengler R. 2013. RTG-Tengler www pages. http:// georadar.rtg-tengler.cz/geologicky-zlom-u-sobotky.
  35. Van Husen D. (1987). Die Ostalpen in den Eiszeiten. Veröffentlichung der Geologischen Bundesanstalt, 2, 24 pp. (in German).